英语人>词典>汉英 : 函数行列式 的英文翻译,例句
函数行列式 的英文翻译、例句

函数行列式

基本解释 (translations)
Jacobian

词组短语
functional determinant
更多网络例句与函数行列式相关的网络例句 [注:此内容来源于网络,仅供参考]

The common method, that all strong-correlation terms of the model are eliminated, can bring the loss in the engineering application, so the new method is proposed that the identified model reserves some correlation. The augmented matrix A is constructed by the outputΔW and the matrix S. The"determinating order based on ratio of determinant"is brought out to screen the strong-correlation terms in the structure identification. The latent root estimation is improved in screening the eigenvalues and eigenvectors. Thus the estimation precision is improved greatly.The consistence check of guidance instrument error coefficients of flight test and ground test is the purpose of flight experiment. The causes of inconsistency of the two models are analyzed. The hypothesis test of linear regression model based on F statistics is proposed to check the consistence.Finally, the instability of error coefficients is probably caused by the change of the flight environments, therefore, the relation between the error coefficients and flight environment is analyzed. The approach is presented to identify SINS guidance instrument error models and compensate the error in the segmented sections corresponding to the change of vertical acceleration of aircraft.

在结构辨识中,常用的方法由于将模型中的强相关项全部剔除而给工程应用带来损失,因此,本文提出了新的有益思想,即在保留一定相关性的基础上进行辨识:将输出向量ΔW与环境函数矩阵S构成增广矩阵A,然后采用"比定阶行列式"来剔除相关向量的方法,这样既可以尽可能多地保留了对落点影响大的强相关参数,又可以对落点影响小的强相关参数给予剔除;在参数估计中,改进了特征根估计中特征根和特征向量的筛选方法,提出"近零"准则,从而大大提高了参数估计的精度;再者,鉴于天地模型"一致性"检验是飞行试验和SINS制导工具误差系数分离的主要目的,因此,本文又深入分析了造成天地模型不一致的原因,提出了采用基于F统计的线性回归模型假设检验方法来进行捷联制导工具误差模型的天地"一致性"检验;最后,鉴于飞行环境剧烈变化可能会对惯性仪表误差系数稳定性带来一定的影响,因此本文深入地分析了SINS制导工具误差系数与外界环境的关系,提出了基于过载变化大小的分段辨识和分段实时补偿的算法。

Function and limit, one-variable calculus and its application, ABC of progression and multiple-variable calculus, determinant, matrix and its calculation, system of linear equations and quadratic form, probability of occurrence, chance variable, law of large numbers and central limit theorem, sample and

本课程主要介绍函数和极限,一元微积分和它的应用,ABC级数和多元微积分,行列式和矩阵的应用,线性方程和二次方程式,事件的概率,偶然性变量,大数定律和中心极限定理,样本和参数估计,方差分析,回归分析。

Function and limit, one-variable calculus and its application, ABC of progression and multiple-variable calculus, determinant, matrix and its calculation, system of linear equations and quadratic form, probability of occurrence, chance variable, law of large numbers and central limit theorem, sample and parametric estimation, variance analysis, regression analysis.

Advanced Mathematics 1 [Course Code 1040008 MAT114] 本课程主要介绍函数和极限,一元微积分和它的应用,ABC 级数和多元微积分,行列式和矩阵的应用,线性方程和二次方程式,事件的概率,偶然性变量,大数定律和中心极限定理,样本和参数估计,方差分析,回归分析。

By using the theory of factor theorem and determinant in higher Alge-bra, the factorization method of Circulant Symmetric function is given.

本文利用高等代数的因式定理理论和行列式理论,给出了轮换对称函数的因式分解方法。

In order to locate direct singular positions, we begin by expressing the determinant of the Jacobian matrix Jx in terms of position of the center P of the moving platform. The Z and the Y coordinates of P may be chosen from the workspace, then the determinant of Jx is now a six order polynomial of X, the x coordinate of P. The direct singular positions corresponding to are obtained by solving the polynomial equation, and retaining all real roots in the workspace.

由速度分析的Jacobian矩阵Jx,将其行列式值表示成活动平台中心点P位置的函数,寻找奇异位置的方法是先假设平台高度,再假设工作空间内P点的Y座标,使Jx行列式成为P点X座标的六次方程式,求解方程式并保留在工作空间内之实根。

First,the determinant is regarded as a function of or- der n and denoted by D;Second,the determinant is expanded by row or by column,then the relation in both of Dand subdeterminants will be examined in details to set up certain a recursion,generally speaking,it must be a homogenous or a non homogenous recursion;fi- nally the coefficients of the general solution are found out with the aid.

给出了用递归关系方法求任意 n 阶行列式的值的一般方法:首先,把已知的 n 阶行列式看作为阶数 n 的一个函数,记为 D;其次,按行或按列展开这个行列式,并仔细观察存在于余子式及 D里的关系,建立关于 D的某一递归关系,此关系总为一个齐次的或非齐次的递归关系;最后,借助于 D(0)、D(1)和D(2)等求出递归关系的通解的系数。

We start by obtaining a flagged form of the Canchy determinant and establish a correspondence between this determinant and nonintersecting lattice paths, from which it follows that Cauchy identity on Schur functions.

首先我们得到了一个带标志的Cauchy行列式,建立了这个行列式和不交格路径丛的对应,从而得到了关于Schur函数的Cauchy等式。

The matrix =( xi, xjp having the e-th power of the greatest common P-divisorp of xi and xj as its-entry is called the e-th power GCD matrix on S. The matrix = having the e-th power of the least common P-multiple p of xi and xj as its-entry is called the e-th power LCM matrix on 5. We obtained the following results:(1) is nonsingular for any set S;(2) If S is an FC set, then the determined of has formula Det =Jpe(x1)...Jpe, where the function Jpe is the generalized Jordan totient function;(3) A formula of the inverse of is given when S is an FC set;(4) If S is an FC set, then |.

以_P的e次方为第i行j列元素的矩阵称为定义在S上的e次幂GCD矩阵,记为;以_P的e次方为第i行j列元素的矩阵称为S上的e次幂LCM矩阵,记为,我们得到了如下结果:①定义在集合S上的e次幂GCD矩阵是非奇异的;②若S是R上的FC集,则S上的e次幂GCD矩阵的行列式Det=J_p~e(x_1)J_P~e(x_2)…,J_p~e,其中J_p~e为R上的Jordan函数;③当S为FC集时,得到了的逆矩阵~-1的表达式;④证明了当S是FC集时,整除,即等于与R上另一个矩阵的乘积。

In practice, flat shell element can be constructed by the simple combination of new plate bending element with plane elasticity element.

在实践上可以将新板弯曲单元与已有的平面弹性单元简单叠合来构造平板壳单元;在理论上则概括为平行列式的概念,即平板壳单元的膜、板两部分在相互平行的位移函数空间和弯矩函数空间上分别列式。

更多网络解释与函数行列式相关的网络解释 [注:此内容来源于网络,仅供参考]

correlation determinant:相关行列式

correlation curve 相关曲线 | correlation determinant 相关行列式 | correlation function 相关函数

Jacobian determinant:雅可比行列式

Iteration, 迭代 | Jacobian determinant, 雅可比行列式 | Joint distribution function, 分布函数

function space:函数空间

function of hybridized orbital 杂化轨道函数 | function space 函数空间 | functional determinant 函数行列式

functional dependence:函数相关

functional constant 函数常数 | functional dependence 函数相关 | functional determinant 函数行列式

functional determinant:函数行列式

function space 函数空间 | functional determinant 函数行列式 | functional group 功能基

functional equation:函数方程

functional determinant 函数行列式 | functional equation 函数方程 | functional model 函数模型

Jacobi's polynomial:多项式

Jacobi(矩)阵 Jacobi matrix | Jacobi多项式 Jacobi's polynomial | Jacobi行列式;函数行列式 Jacobian

Jacobian variety:曲体

Jacobi行列式;函数行列式 Jacobian | Jacobi曲体 Jacobian variety | 值阶 jet

Japanese varnish tree:(日本)漆树

Jacobian 雅可比行列式,函数行列式 | Japanese varnish tree (日本)漆树 | jet stream 急流

determinantal wave function:行列式波函数

determinant 行列式 | determinantal wave function 行列式波函数 | determination of orbit 轨道测定