- 更多网络例句与函数的残数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Although the merit function introduced here is the sum of squares of overdetermined equations, by using the special structure of it, we successfully form the Newton equation by avoiding the product of Jacobi matrices and using only the Jacobi matrix of the function defining NCP.
对非线性互补问题,利用所构造价值函数具有的特殊非线性最小二乘结构,成功实现了具有一般意义的构造Newton方程时仅利用价值函数的一阶导数且无须计算相应残量函数Jacobi矩阵乘积的Newton法。
-
We construct a kind of special matrix function, which is used to characterize the minimization property of this iterative method, and prove that the approximate solution, generated by this iterative method, minimizes this kind of matrix function over a special affine subspace, which means that the Frobenius norm of the residual sequence is strictly monotone decreasing.
通过构造一类特殊的矩阵函数来刻画该迭代方法的极小化性质,并证明了由该迭代方法计算出来的逼近解,可使得这类矩阵函数在一个仿射子空间上达到极小,而且所得到的残差序列的Frobenius范数是严格单调递减的。
- 更多网络解释与函数的残数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
residue class modulo m:模m剩余类
residue class module 剩余类模 | residue class modulo m 模m剩余类 | residue of a function 函数的残数
-
residue class modulo m:模
residue class module 剩余类模 | residue class modulo m 模 | residue of a function 函数的残数
-
residue of a function:函数的残数
residue class modulo m 模m剩余类 | residue of a function 函数的残数 | residue system 剩余系
-
residue system:剩余系
residue of a function 函数的残数 | residue system 剩余系 | residue theorem 残数定理
-
residue:残数
但是傅里叶针对泊松的批评给予了摧毁性的反击.他展示了几个方程的积分变换解,这几个方程是长期以来未能得到分析的,同时他还指出了导至系统理论之门径.其后,柯西运用复变函数中的残数(residue)理论也获得了同样的结果.傅里叶早年草设的物理模型虽很粗糙,