- 更多网络例句与几何重数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First we prove that 0 is an eigenvalue of the operator with geometric multiplicity one,next we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator,last we prove that 0 is an eigenvalue of the adjoint operator of the operator.
首先证明0是对应于该排队模型的主算子的几何重数为1的特征值,其次证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,然后证明0是该主算子共轭算子的特征值。
-
First we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator corresponding to the model, second prove that 0 is an eigenvalue of the operator and its adjoint operator with geometric multiplicity and algebraic multiplicity one,last by using theabove results we obtain that the time-dependent solution of the model str.
首先证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,其次证明0是对应于该系统的主算子及其共轭算子的几何与代数重数为1的特征值,由此推出该系统的时间依赖解当时刻趋向于无穷时强收敛于系统的稳态解。
-
We will obtain that 0 is an eigenvalue of the operator corresponding to the model with geometric and algebraic multiplicity one.
第三节中研究对应于该排队模型主算子的谱特征,得到0是该主算子及其共轭算子几何重数与代数重数为1的特征值。
-
It obtains that the transport operator A has no complex eigenvalue s, and the spectrum of the transport operator A consists of finite real isolated eigenvalues which have a finite algebraic multiplicity in trip Pas.
本文研究了板几何中一类具各向异性、单能、均匀介质迁移算子A的谱,得出了该算子A在带域Pas中无复本征值和由有限个具有限代数重数的实离散本征值组成等结果。
-
It obtains that the transport operator A has no complex eigenvalue s,and the spectrum of the transport operator A consists of finite real isolated eigenvalues which have a finite algebraic multiplicity in trip Pas.
本文研究了板几何中一类具各向异性、连续能量、均匀介质的迁移算子的谱,得出了该算子A在带域Pas中无复本征值和由有限个具有限代数重数的实离散本征值组成等结果。
- 更多网络解释与几何重数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
geometric meaning:几何意义
geometric mean 比例中项 | geometric meaning 几何意义 | geometric multiplicity 几何重数
-
geometric multiplicity:几何重数
geometric meaning 几何意义 | geometric multiplicity 几何重数 | geometric optics 几何光学
-
geometric multiplicity:几何重数;几何阶数
几何平均直径 geometric mean diameter | 几何重数;几何阶数 geometric multiplicity | 几何图样 geometric pattern
-
geometrically regular:几何正则的
几何整的|geometrically integral | 几何正则的|geometrically regular | 几何重数|geometric multiplicity