- 更多网络例句与内射维数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The ann-injective rings start at the angle of annihilator,at the same time,the CT-injective rings start at the angle of cycle tortionless modules.
在第三章,我们引入了CT -内射维数的概念,从维数的角度来更进一步地认识CT -内射。
-
The injective rings play an important role in the study of rings and categories of modules . First , we introduce the notion of ann-injective rings and CT-injective modules .Second,we make an inquiry into a series of their properties.Third,we give the definition of homological dimension of CT-injective modules.At last,we give the definition of FGT rings which is the extension of cogenerator rings.
本文对环与模范畴中一重要的模类—内射模进行了延拓,引入了ann -自内射环以及CT -内射模的概念,探讨了它们一系列的性质,并定义了CT -内射模的同调维数,最后对余生成子环进行推广得到了FGT -环,讨论了它与CT -内射环的关系以及它的一些性质。
-
So in chapter 2, we use P-flat and P-injective modules to characterize some important rings, like SF-rings, Von Neumann regular rings and Coherent rings, etc. In chapter 3, we introduce the homological dimension of P-flat and P-injective modules.
众所周知,正是由于研究各类模以及它们的同调维数,人们才能对环得到更深层次的性质的描述,所以在第二章中,我们就利用了P-平坦模与P-内射模来刻划几种重要的环,如SF环、Von Neumann正则环、凝聚环等。
-
In this paper, we further research P-injective modules, define the concept of prime injective modules and prime injective dimension of module, and discuss the properties of them.
本文在[3]的基础上进一步研究了P-内射环,对于交换环我们引入了素内射模和模的素内射维数的概念,讨论了它们的性质。
-
In this paper, we study syzygies of injective resolvent s and cosyzygies of injective resolutions, and probe the relationship of injective resolvent s and injective resolutions, and then prove that if R is a Noetherian ring with id≤n, then every left R-module has injective dimension at most n or ∞.
研究了内射预解式的合冲模与内射分解式的上合冲模,并探讨了内射预解式与内射分解式之间的联系,证明了如果环R是Noether环且id≤n,则每个左R-模的内射维数小于等于n或者为∞。
-
It is proved that ① Let R be right AGP-injective and right P-V'-ring, then R is left nonsingular ring.
若R是右非奇异的,右有限Goldie维数的右AGP-内射环,则R是半单Artin的。
-
We discuss some properties of GPP- ring and the relations between GPP- ring and - regular ring.
在第三章中,我们主要讨论了n-平坦模和n-FP内射模,定义了n-平坦维数和n-FP内射维数,并考虑了交换n-凝聚环中的n-平坦模和n-FP内射模。
-
In chapter 1, we study the injective test sets and homological demensions.
在第一章,我们研究了内射测试集和同调维数。
-
In recently years, much progress about injective modules has been obtained, particulary about injective test sets and homological dimensions.
近年来,对内射模的研究已经取得了许多令人鼓舞的进展,特别是内射测试集和同调维数的研究。
- 更多网络解释与内射维数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
injective cochain complex:内射上链复形
injection-well plugging 注入井堵塞 | injective cochain complex 内射上链复形 | injective dimension 内射维数
-
left identity element:左幺元
左理想 left ideal | 左幺元 left identity element | 左内射维数 left injective dimension
-
right identity element:右幺元
right ideal 右理想 | right identity element 右幺元 | right injective dimension 右内射维数
-
injective dimension:内射维数
injective cochain complex 内射上链复形 | injective dimension 内射维数 | injective function 内射的函数
-
left injective dimension:左内射维数
左幺元 left identity element | 左内射维数 left injective dimension | 左内积 left inner product
-
right injective dimension:右内射维数
right identity element 右幺元 | right injective dimension 右内射维数 | right inner product 右内积
-
injective dimension of modules:模的内射维数
模的内射包|injective hull of a module | 模的内射维数|injective dimension of modules | 模的拟内射包|quasi-injective hull of a module
-
left inner product:左内积
左内射维数 left injective dimension | 左内积 left inner product | 左不变平均值 left invariant mean
-
right inner product:右内积
right injective dimension 右内射维数 | right inner product 右内积 | right invariant haar measure 右不变哈尔测度