英语人>词典>汉英 : 共轭映射 的英文翻译,例句
共轭映射 的英文翻译、例句

共轭映射

词组短语
conjugation map
更多网络例句与共轭映射相关的网络例句 [注:此内容来源于网络,仅供参考]

We show that Jordan multiplicative bijective maps on prime operator algebrasmust be additive. As its application, we show that every Jordan * multiplicative bijec-tive map on every factor C~* algebra is a C~* isomorphism or a conjugate C~* isomorphism,in the special case of B, it must be a *-isomorphism or a conjugate *-isomorphism.We also prove the additivity of Jordan multiplicative bijective maps on nest algebras.

证明了素算子代数上Jordan可乘双射的可加性,利用这一结论刻画了因子C~*代数上的Jordan*可乘双射,我们的结果表明这样的映射一定是C~*同构或共轭C~*同构;证明了套代数上的Jordan可乘双射的可加性。

Generalized strong vector variational-like inequalities; Minty's lemma; KKM mapping; pseudomonotone; Ky Fan lemma; open mapping theorem; complete; the second category; conjugate; proper convex lower semicontinuous function; linear mapping; closedness

基础科学,数学,数学分析广义强向量似变分不等式; Minty引理; KKM映象;伪单调; Ky Fan引理;开映射定理;完备;第二纲;共轭;真凸下半连续函数;线性映射;闭性

We alsostudy the Lie skew multiplicative bijective maps on B that is, the maps satisfyingΦ(AB- BA~*=ΦΦ-ΦΦ~*, and show that these maps must be of theformΦ=UAU~*, where U is a unitary or a conjugate unitary operator.

刻画了B(H是复Hilbert空间)上的Lie-skew可乘双射即满足Φ(AB-BA~*=ΦΦ-ΦΦ~*的双射,结果表明这样的映射一定是UAU~*的形式,其中U是酉算子或共轭酉算子。

Chapter 4 establishes the theory of convex fuzzy mappings: The concepts, such as Jensen's inequality, positively homogeneous, infimal convolution, right scalar multiplication and convex hull are introduced. The corresponding theorems are demonstrated by using the parametric representations of fuzzy numbers. In anti-fuzzy number space, the conjugate mapping of convex fuzzy mapping is concerned, and convexities of conjugate set and conjugate mapping of convex fuzzy mapping are proved. The notions of subgradient, subdifferential, differential with respect to convex fuzzy mappings are investigated, which provides the basis of the theory of fuzzy extremum problems.

在第4章中,建立了有关凸模糊映射的理论:建立了关于凸模糊映射的Jensen不等式、模糊正齐次映射、凸模糊映射的下卷积、右数乘和凸包等概念,利用模糊数的参数化表示,给出了相应的定理;在反模糊数空间,对凸模糊映射的共轭也作了探讨,证明了凸模糊映射的共轭集合和共轭映射都是凸的;最后对凸模糊映射的次梯度、次微分和微分等概念进行了研究,为模糊极值理论打下了基础。

By means of equivalent transformation of conjugate condition, the conjugate mapping proc ess is separated from the concrete forms of generator and conjugate movement th us achieved intellecturalization and automatization of synthesis of conjugate cu rves.

通过共轭条件的等价变换,将共轭映射过程与母曲线及共轭运动的具体型式隔离开来,从而达到共轭曲线综合的智能化、自动化。

Chapter 3, in the above system, gives out the definitions of topological new transitivity, topological transitivity, topological strong transitivity and topological conjugate of a sequence of maps, studies basic properties of the above topological conjugate, and obtains some main results, proves topological new transitivity and topological transitivity are equivalent u-under a compact metric space, a sequence of full maps and interchangeable with each other, and that some conclusions associated with topological conjugate.

第三章,在上述系统中给出了一列映射的拓扑新传递、拓扑传递、拓扑强传递和拓扑共轭的定义;研究了一列映射的拓扑共轭的基本性质,得到了一些主要结果;证明了在底空间是紧致度量空间、一列映射是满映射并且两两可交换的条件下拓扑新传递和拓扑传递是等价的;还证明了几个与拓扑共轭相关的结论。

In the last chapter, on the basis of theories in paper [4, 5], the notions of strong mixing, weak mixing, generator and expansion of the variable-parametric dynamical system are introduced, it turns out that in variable-parametric dynamical system strong mixing implies weak mixing and then implies transitivity; it is proved that if and both are variable-parametric dynamical system, F conjugates with G , the members of F are communicate with each other and the members of G are also communicate with each other, what's more, they are both homeomorphism, then F is strong mixing implies G has the same properties; futhermore, we prove that F is strong mixing implies F Devaney chaos in the sense of modification in variable-parametric dynamical system and that F Devaney chaos in the sense of modification if and only if G Devaney chaos in the sense of modification when semi-conjugate with and they both are communicate and homeomorphism; at last, we illustrate that F has generator if and only if it has weak generator, and we also prove that if F is expansion, then F has generator.

在第三章中,我们在文[4,5]的基础上,提出了变参数动力系统拓扑强混合、拓扑弱混合以及变参数动力系统的生成子、扩张的概念;证明了变参数动力系统拓扑强混合蕴含拓扑弱混合,进而蕴含拓扑传递;证明了:如果,为两个变参数动力系统,F与G拓扑半共轭,且F两两可交换,G两两可交换,它们均为同胚映射,那么F拓扑强混合,则G也有同样的性质;本章还证明了变参数动力系统拓扑强混合蕴含F在修改的意义下Devaney混沌;在此基础上得出了:如果变参数动力系统与变参数动力系统拓扑半共轭,它们都两两可交换,并且它们均为同胚映射,那么F在修改的意义下Devaney混沌当且仅当G在修改的意义下Devaney混沌;得出了F有生成子当且仅当F有弱生成子;如果F是扩张的,则F有生成子。

If for any〓,they are conjugate to each other in D if andonly if they are conjugate to each other in G then every virtual character of D is-stable and if〓is an irreducible character of G in b with height zero,the map〓is an isometry from〓onto〓.

若对任意〓,它们在D共轭的充要条件是它们在G中共轭,则D的每一个指标是-稳定的,且若x是G落在b中的高零不可约指标,则下面映射是从〓到〓的等距映射

In Chapter 2,we introduce the definition of adding machines,and give sev-eral equivalent conditions on the existence of several kinds of conjugacy and semi-conjugacy relations between adding machines.

第二章介绍了广义符号空间上的加法机器的定义,给出了加法机器之间存在着各种共轭及半共轭关系的多个充要条件,证明了加法机器之间的拓扑半共轭一定是一个群同态与一个平移映射的复合,并研究了此同态的核的构成。

In this paper,we proved that on one-sided symbolic space, model shift map is topologically conjugate with the traditional shift map.

本文证明:拟移位映射和移位映射拓扑共轭,从而揭示出拟移位映射是移位映射的一个重要的拓扑共轭系统。

更多网络解释与共轭映射相关的网络解释 [注:此内容来源于网络,仅供参考]

isogonal conformal transformation:等角映射

isogonal conformal mapping 等角映射 | isogonal conformal transformation 等角映射 | isogonal conjugate lines 等角共轭线

conjugate vector:共轭向量

conjugate transformation 共轭变换 | conjugate vector 共轭向量 | conjugation map 共轭映射

conjugation map:共轭映射

conjugate vector 共轭向量 | conjugation map 共轭映射 | conjugation operator 共轭算子

conjugation operator:共轭算子

conjugation map 共轭映射 | conjugation operator 共轭算子 | conjunction 合取

homeomorphism:同胚

若存在同胚 (homeomorphism) 使得 ,则称拓朴共轭 (topologically conjugate) 於 S. 这时,就称为一个共轭. 我们可以证明,拓朴熵是拓朴共轭性的一个不变量. 也就是说,两个拓朴共轭的连续映射有相同的拓朴熵,反之亦然.

isogonal trajectory:等角轨线

isogonal conjugate lines 等角共轭线 | isogonal trajectory 等角轨线 | isogonal transformation 保角映射