- 更多网络例句与共线点相关的网络例句 [注:此内容来源于网络,仅供参考]
-
A camera calibration method with co-line points is proposed, in which distortion center is located according to cross ratio invariability, and then distortion coefficients are calculated based on a line's central projection is a line.
摘要提出一种用共线点列标定摄像机镜头畸变参数的方法,先根据交叉比不变性确定畸变中心,再利用直线的中心投影仍为直线这一性质确定畸变系数。
-
Furthermore,we present the method for designing quadratic Bezier developable surface:give four corner points of developable surface and two free designing parameters,the other two control vertexes are on the line connecting the linear interpolation point between the first two control vertexes and the linear interpolation point between the last two control vertexes,and they are the linear interpolation points between these two linear interpolation points respectively,namely,these four linear interpolation points are colinear.
提出了二次Bézier可展曲面的设计方法:给定可展曲面的4个角点a0、b0、a2、b2和两个自由设计参数?姿、?滋,则待求的2个控制顶点a1、b1是在前2个控制顶点a0、b0的线性插值点a*与后2个控制顶点a2、b2的线性插值点b*的连线上,并且也是a*、b*这2个线性插值点的线性插值,即这4点a*、a1、b1、b*共线。
-
A one-dimensional calibration object consists of three or more collinear points with known relative positions.
摘要一维标定物是由三个或三个以上彼此距离已知的共线点构成的。
-
In this paper, cross ratios of the four collinear points and five coplanar points were analyzed first, then some affecting factors were concluded, and some constraints were proposed on constructing model-based object recognition system.
首先对共线4点和共面5点构成的交比不变量的稳定性进行了分析,得出了影响稳定性的因素,然后提出在构造目标识别系统的模型时应注意的约束条件,实验表明:在这些条件下构造模型的抗噪声能力大大提高。
-
The proof of some propositions on points collinear in elementary geometry with vector mothod;2. The last we proof points of intersection being collinear .
文章首先证明了巴卜斯定理的特殊情况,然后利用此特殊情况及巴卜斯定理作了四个推广应用,最后将巴卜斯定理的原来三点共线推广到了六点共线,再推广到12n(n-1)个交点共线。
-
A calibration model was established by introducing a planar target that could move freely with three collinear and known mutual location points. The calibration point coordinates in a camera coordinate system could be calculated by using the imaging information of three points and the light stripes on image plane of the camera.
引入一个可自由移动的平面靶标,靶标上只需要共线且相互位置确定的3个特征点,利用共线三点建立三点透视数学模型,根据3个特征点以及光条纹在摄像机像面的成像信息,获取了光平面上标定点在摄像机坐标系下的坐标。
-
What I want to do is making it used in the elementary geometry, to prove the point of intersection in the same line and lines intersect at the same point .
由于Desargues定理及对偶定理是建立在仿射平面上的,而本文要讨论的是如何将其运用到以欧氏平面为基础的初等几何中,证明点共线和线共点的问题。
-
Therefore,the problems of concureut line and collinear point in the Elementary Geometry can be solved by the way of the Higher Geometry.
所以初等几何中关于共线点、共点线的问题能运用高等几何方法去解决。
-
The problem of concurrent line and collinear point in Elementary Geomettry is a simple problem. However it is very complex and difficult when we use Elementary Geometry theory to solve it.
初等几何中共线点及共点线的问题,本来是个简单的几何问题,然而这个问题运用初等几何方法去解决,有时会觉得非常复杂和困难。。
-
This thesis makes use of complex numbers to study geometry. It mainly considers the following questions: using complex numbers to express collected points and curves on the level;geometric applications of complex numbers on collinear,concurrent,round,Mobius Mappings of Complex numbers problems,etc..Meanwhile,this thesis recommends some methods for thinking on mathematics.
本文利用复数来研究几何,主要考虑如下的问题:平面上的点集的复数表示;平面曲线的复数表示;复数在共线、共点、共圆、复数的麦比乌斯变换等几何问题上的应用,在说明这些应用的同时介绍一些数学上常用的思考方法。
- 更多网络解释与共线点相关的网络解释 [注:此内容来源于网络,仅供参考]
-
centerline:中心线
二,教学安排(共6周,全日制) 1,Pro/Engineer概述 (1)界面,主菜单,工具栏,信息区等介绍 (2)文件的操作:当前目录,新建,保存,删除 2,草图设计 (1)绘制草图的基本命令 a.绘制点 b.绘制线重点:绘制线方法 线型:几何线(Geometry),中心线(Centerline) 方法:两端点绘线(2oints),
-
collinear diagram:列线图
collective 集体 | collinear diagram 列线图 | collinear points 共线点
-
collinear points:共线点
collinear diagram 列线图 | collinear points 共线点 | collinear vectors 共线向量
-
common perpendicular:公垂线
"共线;交线","common line" | "公垂线","common perpendicular" | "共点;交点","common point"
-
pentad of noncollinear points:非共线点的拼五小组
悬挂点 pendant point | 非共线点的拼五小组 pentad of noncollinear points | 十五边形 pentadecagon
-
plane curve:平面曲线
相贯线是相交两立体表面的共有线,一般是封闭的空间曲线(space curve),特殊情况下也可能是平面曲线(plane Curve)或直线(straight line). 因相贯线是两立体表面共有线,所以求相贯线的实质是求两立体表面共有点的投影. 先求特殊点,
-
space curve:空间曲线
相贯线是相交两立体表面的共有线,一般是封闭的空间曲线(space curve),特殊情况下也可能是平面曲线(plane Curve)或直线(straight line). 因相贯线是两立体表面共有线,所以求相贯线的实质是求两立体表面共有点的投影. 先求特殊点,
-
noncollinear point:非共线点
二次无心曲面 noncentral surface of second order | 非共线点 noncollinear point | 非可换代数 non-commutative algebra
-
Simson:西姆松
西姆松(Simson)定理(西姆松线) 西姆松(Simson)定理(西姆松线) (Simson)定理 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上.
-
Datum Center Point:基准中心点
l 共轴形体基准轴心线 Datum Axis from Coaxial Diameters | l 基准中心点 Datum Center Point | l 孔组基准轴心线 Datum Axis from a Pattern of Holes