- 更多网络例句与元数学的相关的网络例句 [注:此内容来源于网络,仅供参考]
-
By 19 he was studying metamathematics with Bertrand Russell.
到了19岁,他开始跟随罗素学习元数学。30岁的时候,他已经是MIT的数学教授和彻头彻尾的怪物了。
-
Metamathematics is a subject on symbolic logic ,which focuses on the mathematics discrepancy.
元数学是一门数理逻辑方面的学科,其主要研究对象是数学本身的矛盾性问题。
-
From Harvard. By 19 he was studying metamathematics with Bertrand Russell . Come 30 he was a professor of mathematics at MIT and a thoroughly odd goose.
到了19岁,他开始跟随罗素学习元数学。30岁的时候,他已经是MIT的数学教授和彻头彻尾的怪物了。
-
It should then not be confused with a first-order theory of metamathematics, as the quantifiers have been stripped out, though universal quantifiers may be emulated by rewriting into free variables.
然后不应该混为一谈一阶元数学理论,如量词被剥夺了,但普遍的量词可仿效改写成自由变数。
-
Natural Boundary Integral Method and Its Applications
自然边界元方法的数学理论。
-
It's pointed out that soft sensor will play more important role in field bus network control system. According to this, a crude solution was addressed. At last, we point out that soft sensor technology must used to build an information warehouse for the whole enterprise, combined with data fusion, data warehouse, data rectification and other related technologies. The main contributions of this dissertation are as follows: The background, requirement, and application situation of soft sensors are expounded, the theories, methods and skills of soft sensing technology are analyzed, and the fruits and problems in current soft sensor technologies are summarized. Some new methods of soft sensor is proposed: A principal component analysis-based secondary variable selection method are proposed; A new conception which modeling data should have gross error detection is addressed, and then a cluster analysis-based modeling data gross error detection method is given.
本文的主要贡献有:对软测量技术根据实践的要求进行了一定的理论研究,针对具体问题提出了新的方法:讨论了辅助变量选择问题,研究了基于主元分析的辅助变量选择方法,该方法克服了传统方法只能利用数学模型产生的仿真数据进行最优辅助变量选择的缺点,可以根据历史数据进行辅助变量选择;提出了建模数据显著误差侦破的概念,指出传统的显著误差侦破研究的是已知过程数学模型的情况,而建模时数学模型是未知的,但是直接来自现场的数据并不能保证不含显著误差,并用基于聚类分析的方法解决了该问题,该方法利用聚类分析原理,直接面对过程数据,不需以过程模型为基础,在此基础上给出了软测量建模过程中样本数据的处理方法。
-
In Chapter two, it is given of the three-dimensional boundary element and the boundary element space, Sobolev space for the contact boundary element problem with friction; it is proved of existence and uniqueness of the solution by variation inequality for the contact Boundary Element Method matrix equation under two kinds of condition that the contact zone is fixed and the contact zone is increasing along with the load; it is given of the expressionfor the error of the exact solution and the boundary element solution.
第2章,给出三维边界单元及边界元空间、有摩擦接触边界元问题的Sobolev空间,利用变分不等式证明了不变接触区和随载荷可变接触区两种情况下的接触边界元法矩阵方程解的存在唯一性,给出了准确解与边界元解的误差表达式,还证明了三维弹塑性摩擦接触问题凝缩矩阵解的存在唯一性,为三维弹塑性摩擦接触边界元法奠定数学基础。
-
Establish its mathematic model, and carry on correlative calculation, to confirm that the accuracy of firing data by mortar-howitzer cannon can work effectively under indemnificatory conditions of fire control system.
建立迫榴炮火控系统决定诸元精度的数学模型,并进行相应计算,由此确定在火控系统保障条件下,某型迫榴炮精密法决定诸元精度可以进行效力射。
-
Due to the complexity of the cell jitter, the NonSynchronous Tining Recovery methods are currently not mature With the emphasis being given to the Class A CBR traffic, this paper analyzes the performance of the queueing delay and cell jitter at the source node and intermediate nodes, and discusses the Source Timing Recovery at the destination node in ATM networks Firstly, this paper presents a description of the cell jitter of CBR traffic, and gives the definitions of two kinds of cell jitter regarding the Source Timing Recovery for CBR traffic Then, by using exact mathematical models and analysis methods, this paper analyzes the impact of the factors, such as the capacity of the queueing buffer, the randomness, the deterministic nature and the correlation in cell arrivals of the background traffic sources, on the queueing delay and cell jitter performance of the CBR traffic through Statistical Multiplexitng To obtain an insight into the power spectral distribution and look for better schemes for the depression and filtering of the cell jitter, within the analyses we succeed deriving the power spectrum of the cell jitter for CBR traffic Hence, not only the power spectral distribution of the cell jitter can in the frequency domain be qualitatively understood, but also can the rms (root-meansquare) value of the cell jitter be quantitatively obtained so as to more accurately measure the amplitude of the jitter In the end-to-end performance analysis of the queueing delay and cell jitter, we propose a kind of quasi-periodic cell stream model to characterize the jittered CBR traffic, and present an initial queueing analysis of the CBR traffic following such a model at a generic intermediate node Additionally, we briefly discuss the buildout/playout and Source Timing Recovery functions of the destination node Finally, regarding the Source Timing Recovery of CBR traffic, this paper systematically discusses several important principles of the cell jitter filtering and depression reported in the literature, introduces several implementation schemes of the Source Timing Recovery e.
由于信元抖动的复杂性,非同步定时恢复方法目前还很不成熟。本文针对A类CBR业务流在ATM网络源节点和中间节点的排队时延和信元抖动性能,以及在目的节点的源定时恢复问题作了较为全面的研究。首先,文中描述了CBR业务流的信元抖动,并具体地给出了两种与CBR业务源定时恢复有关的信元抖动的定义。然后,采用了精确的数学模型和分析方法,有针对性地分析了业务背景中信元到达的纯随机性、确定性和相关性以及排队缓存器容量等因素对CBR业务流经过统计复用后的排队时延和信元抖动性能的影响。为了了解信元抖动的功率频谱分布和寻求更好的抑制和滤除抖动的方法,在性能分析中,我们成功地完成了CBR业务流信元抖动的功率谱分析,使得不但可以从频域定性地认识信元抖动的能量分布特性,而且还可以定量地求出信元抖动的均方根值(rms:root-mean-square),以更为准确地衡量抖动的大小。在CBR业务流的多节点端-端排队时延和信元抖动性能分析中,我们提出了一种准周期性(quasi-periodic)信元流模型来描述感染了信元抖动的CBR业务流,并基于这一模型进行了CBR业务流中间节点的初步排队分析。
-
The aim of this text is about how to serve the students better in their special field of study, train their interests in maths studying and how to fully reflect the quintessence of dual system.Key words : Dual system educational system; the thought based on ability; teach students according to their level; interest
本文拟就将从&双元制&模式下数学怎么更好地为学生学习专业课程服务,培养学生学习数学的兴趣,在数学学习中怎样秉承以能力为本位的&双元制&教育制度的精髓等五个方面进行初浅的探讨。
- 更多网络解释与元数学的相关的网络解释 [注:此内容来源于网络,仅供参考]
-
boundary element method:边界元方法
将边界元方法(Boundary Element Method)应用到试井分析中,将边界元理论与渗流力学理论相结合,建立并求解了考虑井筒储存效应和表皮效应影响的任意形状双重介质油藏试井解释数学模型,并对井底压力动态的曲线特征进行了分析.
-
branch point:分支点
而且引起了[[数学奇点]]的概念,这一概念最终导致出了[[黎曼球]]的概念. 西元1850年,[[皮瑟]]成功地把极点(pole)和分支点(branch point)区别出来,而且引起了[[数学奇点]]的概念,这一概念最终导致出了[[黎曼球]]的概念.
-
Cayley:凯莱
希尔伯特的兴趣转移到物理学和数学基础方面.代数不变量问题(1885-1893).代数不变量理论是19世纪后期数学的热门课题.粗略地说,不变量理论研究各种变换群下代数形式的不变量.古典不变量理论的创始人是英国数学家G.布尔(Boole)、 A.凯莱(Cayley)和 B.西尔维斯特(Sylvester).n个变元x1;
-
character set:字元集
这前 128 个字码指标和 ASCII 字元集 (Character Set) 中所定义的字码指标相同. 后 128 个字码指标 (128255) 代表的是特殊字元,例如拉丁文字母、腔调字、货币符号与分数. 其余字码指标则是使用在各种符号,包括各国文字字元、读音符号以及数学和技术性符号.
-
dual:对偶
就数学原理,超密加码与量子隐传是两个互为对偶(Dual)的概念. 首先假设春娇(Alice)与志明(Bob)是一对相隔甚远的恋人,春娇想把手边的一个单一量子位元「隐形传递」给志明当礼物. 但春娇完全不知道此位元处於何型式的量子态,
-
lie group:李群
数学 中,李群(Lie group)是具有群 结构的 实流形 或者 复流形 ,并且群中的加法运算和逆元运算是栁形中的 解析映射 . 李群在 数学分析、 物理和 几何 中都有非常重要的作用.
-
lie group:群
j i 例如 i*i=-1,j*kl=il 等[3]李群(Lie Group):数学名词数学中,李群(Lie group)是具有群 结构的 实流形 或者 复流形 ,并且群中的加法运算和逆元运算是栁形中的 解析映...
-
metalogic:元论理
元语言的 meta-languistic | 元论理 metalogic | 元数学 metamathematics
-
quaternion:四元数
1843年10月16日,在数学史上是一个重要的日子:这一天爱尔兰的数学家哈密尔顿(William Rowan Hamilton)发现了"四元数"(Quaternion). 有一位英国人汤姆斯.修(Thomas Hill)曾经这么说:"牛顿的发现对于英国及人类的贡献超过所有英国的国王;
-
radix:基底
而8位元的商放在累加器,但8位元余数则放在B暂存器.说也奇怪,DIV AB指令却很少使用在数学的"除法"程序中,而它却常使用在数字的基底(radix)转换和程序化的位移操作中.在稍后会举例如何使用DIV AB指俴作基底的转换.在位移操作里,