- 更多网络例句与依测度收敛相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Second, On the basis of analysis of density distribution of sequence points on the chaotic orbit of one-dimension chaotic mapping, a mutative interval chaotic optimization algorithm is presented in search for the solution optimums of the non-linear constrained problems with multi-variables and multi-peak values. With the objective function probability measurement approaching a limit 1, the convergence of the algorithm on the global optimal solution is proofed by aid of Chebyshev inequality.
二、基于一维混沌映射混沌点集的概率测度分析,提出了一种适于解决多变量多峰值非线性约束问题的新的混沌优化算法——变区间混沌优化算法,并应用切比雪夫不等式论证了算法依概率收敛于全局最优解。
-
First, the partial derivative is defined, based on the convergence in probability measure in the probability measure space.
本文首先在概率测度空间上,利用依概率测度收敛,定义了多随机变量函数的偏导数,并且偏导数的计算式可以通过替换实值函数的对应的偏导数中所有的实变量替换为随机变量得到。
-
In chapter 3, we study the relation between convergence in fuzzy measure of nonnegative fuzzy measurable functions and fuzzy mean convergence of fuzzy integrals.
研究了非负模糊可测函数列依测度收敛与广义模糊积分平均收敛之间的关系。
-
On the other hand, we also give several terse sufficiency conditions where the fuzzy mean convergence of fuzzy integrals implies the convergence in fuzzy measure and making them equivalent.
另一方面,文中还给出了广义模糊积分平均收敛蕴涵依测度收敛的几个简洁的充分性条件,以及使两者等价的条件。
-
Furthermore, as its corollary, we still get several terse and pragmatic sufficiency conditions where the convergence in fuzzy measure implies the fuzzy mean convergence of fuzzy integrals.
作为这一结果的推论,还得到了依测度收敛蕴涵广义模糊积分平均收敛的几个简洁、实用的充分性条件。
-
First, we present various new convergence concepts for sequence of fuzzy random variables, including convergence sure, convergence almost sure, uniform convergence, uniform convergence almost sure, almost uniform convergence, convergence in chance measure, and their corresponding weak convergence. Second, the relations among some types of convergence are studied. Finally, we design some algorithms about fuzzy random simulations to compute the mean chance of fuzzy random event, find the optimistic value of a return function, and evaluate the expected value of a fuzzy random variable.
首先,提出了几类模糊随机变量序列的收敛性概念,包括:必然收敛、几乎必然收敛、一致收敛、几乎必然一致收敛、近一致收敛、依机会测度收敛以及与以上概念相对应的弱收敛;其次,讨论了收敛性之间的关系;最后我们设计了模糊随机模拟算法,用于计算模糊随机事件的平均机会,寻找收益函数的乐观值,以及估计模糊随机变量的期望值。
-
First, we present various new convergence concepts for sequence of fuzzy random variables, including convergence sure, convergence almost sure, uniform convergence, uniform convergence almost sure, almost uniform convergence, convergence in chance measure, and their corresponding weak convergence.
首先,提出了几类模糊随机变量序列的收敛性概念,包括:必然收敛、几乎必然收敛、一致收敛、几乎必然一致收敛、近一致收敛、依机会测度收敛以及与以上概念相对应的弱收敛;其次,讨论了收敛性之间的关系;最后我们设计了模糊随机模拟算法,用于计算模糊随机事件的平均机会,寻找收益函数的乐观值,以及估计模糊随机变量的期望值。
-
With four continuity of non-additive set function and the relation of four convergences of the measurable function sequence,four forms Lebesgue theorem about measurable closed-valued functions on monotone measure space are discussed,respectively.
在经典测度论中,Lebesgue定理刻画了实值可测函数序列几乎处处收敛和依测度收敛之间的关系。1984~1986年,王震源[9]先后提出了较弱的"自连续"、"零可加"、"伪自连续"、"伪零可加"等重要概念,讨论了模糊测度空间上单值可测函数序列各种收敛之间的关系,推广了经典测度论中著名的Lebesgue定理以及其他定理。
-
We will discuss the convergence of the sums of stochastic processes in Lp space by combined measure.
本文则进一步讨论了随机过程之和在Lp空间中依联合测度收敛的情况。
- 更多网络解释与依测度收敛相关的网络解释 [注:此内容来源于网络,仅供参考]
-
convergence in mean:平均收敛
convergence factor 收敛因子 | convergence in mean 平均收敛 | convergence in measure 依测度收敛
-
convergence in measure:依测度收敛
convergence in mean 平均收敛 | convergence in measure 依测度收敛 | convergence in norm 依范数收敛
-
convergence in measure:依测度收敛;测度性收敛
平均收敛 convergence in mean | 依测度收敛;测度性收敛 convergence in measure | 依概率收敛 convergence in probability
-
convergence in norm:依范数收敛
convergence in measure 依测度收敛 | convergence in norm 依范数收敛 | convergence in probability 依概率收敛
-
convergent continued fraction:收敛连分数
convergent 收敛的 | convergent continued fraction 收敛连分数 | convergent in measure 依测度收敛的
-
convergent in measure:依测度收敛的
convergent continued fraction 收敛连分数 | convergent in measure 依测度收敛的 | convergent in square mean 平方平均收敛
-
convergent in square mean:平方平均收敛
convergent in measure 依测度收敛的 | convergent in square mean 平方平均收敛 | convergent infinite product 收敛无穷乘积