- 更多网络例句与余滤子相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper, we discuss some kinds of special filters and congruence relation in fuzzy algebraic system MTL which is used extensively. The conceptions of the special filter are fuzzified in terms of the fuzzy set of Zadehs theories and further study them by way of logic algebra of n-value.
本文在具有广泛应用的模糊逻辑代数系统MTL-代数中,讨论了几类特殊滤子和同余关系,并且进一步用多值逻辑代数的方法研究它们。
-
Is proved to be a residuated lattice. In the second chapter, the concept of congruence relation on a residuated lattice is introduced. It is proved that the quotient algebra of a residuated lattice about the congruence relation is still a residuated lattice. Then as a generalization of the congruence relation, the concept of fuzzy congruence relation is brought in.
本文的第二章首先定义了剩余格上的同余关系,证明了剩余格中的滤子对应一个同余关系,并由该同余关系确定的商代数仍是剩余格;然后将同余关系自然推广,定义了Fuzzy同余关系,证明了Fuzzy同余关系与Fuzzy滤子是一一对应的。
-
Chapter three: Define fuzzy congruence relation of MTL-algebra, prove that fuzzy fiter and fuzzy congruence relation is a bijective function in MTL-algebra, quotient algebra induced by congruence relation still forms a MTL-algebra; Introduce the relation between some kinds of fiters and fuzzy filters maitained above in IMTL-algebra,i.e. BR_0 algebra, which is a MTL-algebra satisfied inversely odering and involutive relation.
第三章:定义了MTL-代数中的Fuzzy同余关系,证明了MTL-代数中Fuzzy滤子与Fuzzy同余关系是——对应的,由同余关系所诱导的商代数依然构成一个MTL-代数;介绍了在满足逆序对合对应的MTL-代数-IMTL-代数,即BR_0-代数中上述几中特殊滤子,Fuzzy滤子之间的关系。
-
Since there is a close connection between principal filters and the smallest complete semi-lattice congruences on a po-semigroups, the study of the structure of filters has attracted a number of authors. For example, Kehayopulu, Xie X.Y, Cao Y.
在偏序半群中,由于主滤子同最小完全半格同余乃至完全半格同余有着密切的联系,又主滤子在偏序半群结构的研究中起到至关重要的作用,因而对滤子结构的研究吸引了众多学者的关注。
-
This paper analyses and systematically studies the structure of some special quantales (such as characterization of idempotent left-side spatial quantales, characterization of simple quantales); relations among elements of quantale; inner links between prequantales and quantales; relations among nuclei and quotiont quantales and congruences of quantale; relations between closed filters and closed maps; categorical properties of category Quant.
本文对Quantale的元素之间、核映射与商Quantale以及同余关系之间的关系,特殊Quantale的结构(如幂等左侧空间式Quantale的特征,单纯Quantale的特征等),Prequantale和Quantale之间的内在联系,Quantale中的闭滤子和闭映射以及Quantale范畴Quant的性质等作了较为系统的研究。
-
This paper analyses and systematically studies the structure of some special quantales (such as characterization of idempotent left- side spatial quantales, characterization of simple quantales); relations among elements of quantale; inner links between prequantales and quantales; relations among nuclei and quotient quantales and congruences of quantale jrelations between closed filters and closed maps ;categorical properties of category Quant.
本文对Quantale的元素之间、核映射与商Quantale以及同余关系之间的关系,特殊Quantale的结构(如幂等左侧空间式Quantale的特征,单纯Quantale的特征等),Prequantale和Quantale之间的内在联系,Quantale中的闭滤子和闭映射以及Quantale范畴Quant的性质等作了较为系统的研究。
- 更多网络解释与余滤子相关的网络解释 [注:此内容来源于网络,仅供参考]
-
cofibration:上纤维化
cofibering 上纤维化 | cofibration 上纤维化 | cofilter 余滤子
-
cofilter:余滤子
cofibration 上纤维化 | cofilter 余滤子 | cofinal set 共尾集
-
cofinal set:共尾集
cofilter 余滤子 | cofinal set 共尾集 | cofinal subset 共尾子集
-
cofinal directed set:共尾有向集(合)
cofiltration | 余滤子 | cofinal directed set | 共尾有向集(合) | cofinal functor | 共尾函子