- 更多网络例句与伴随差分方程相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The optimal control law obtained consists of linear analytic functions and a compensation term which is a series sum of the adjoint vectors. The analytic functions can be found by solving a Riccati matrix difference equation and a matrix difference equation. The compensation term can be obtained by a recursion formula that solves adjoint vector equations.
得到的最优输出跟踪控制律由状态向量的线性解析函数和伴随向量级数形式的补偿项组成,其解析函数由一次性求解Riccati矩阵差分方程和矩阵差分方程得到,补偿项由求解伴随向量差分方程的递推公式得到。
-
It takesthe weighted average of the L2 norm of the difference of the observation and thesolution of the system and the L2 norm of the difference of conormal derivativeat the different sides of the interface for every subdomain as cost functional andthe smooth coefficients of the subproblem and the value of solution of the originalproblem at interface as identification parameters;Using the property of continu-ous functional defined on compact set,the existence of the optimal solution of theidentification problem is proved;The necessary conditions of optimality charac-terized by the system equation,the adjoit equation and the variational inequalitysimultaneously are given by introducing the conception ofdifferential andadjoit variable;An algorithm is devised and its flow graph is given.
其次,针对分片光滑动力系统的特征,结合正演过程的区域分解算法,建立了分片光滑系统的分解区域参数辨识模型,该模型以子区域上解的实测值与计算值之差的L2范数和界面两侧的通量差的L2范数的加权平均作目标泛函,各子问题的光滑系数及界面上真解的值为待辨识参量;利用紧致集上连续泛函的性质,证明了子区域上参数辨识问题最优辨识参量的存在性;引入微分的概念,借助伴随变量,给出了由系统方程,伴随方程和变分不等式共同表征的最优性必要条件;根据此必要条件设计了算法,给出了算法的程序框图。
- 更多网络解释与伴随差分方程相关的网络解释 [注:此内容来源于网络,仅供参考]
-
adjoint determinant:伴随行列式
adjoint boundary value problem 伴随边值问题 | adjoint determinant 伴随行列式 | adjoint difference equation 伴随差分方程
-
adjoint difference equation:伴随差分方程
adjoint determinant 伴随行列式 | adjoint difference equation 伴随差分方程 | adjoint differential equation 伴随微分方程