- 更多网络例句与伴随向量相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The optimal control law obtained is composed of feedforward and feedback optimal terms without time-delay in analytic forms and a compensation term with time-delay in a sequence limit form of adjoint vectors.
得到的最优控制律由解析的无时滞前馈-反馈控制部分和伴随向量序列极限形式的时滞补偿控制部分组成。
-
The new method is a combination of characteristic approximation to handle the convection part, to ensure the high stability of the method in approximating the sharp fronts and reduce the numerical diffusion, a smaller time truncation is gained at the same time, and a mixed finite elementspatial approximation to deal with the diffusion part, the sealer unknown and the adjoint vector function are approximated optimally and simultaneously.
此方法即为对方程的对流项沿流体流动的方向即特征方向进行离散,从而保证格式在流动锋线前沿逼近的高稳定性,消除了数值弥散现象,并得到了较小的时间截断误差;另一方面,对方程的扩散项采用混合元离散,可同时高精度逼近未知函数及其伴随向量函数,理论分析表明,此方法是稳定的,具有最优的L~2逼近精度。
-
The obtained optimal control law consists of analytical linear feedforward and feedback terms and a nonlinear compensation term which is the limit of the adjoint vector sequence.
得到的最优控制律由解析的线性前馈-反馈项和伴随向量序列极限形式的非线性补偿项组成。
-
The optimal control law obtained consists of linear analytic functions and a compensation term which is a series sum of the adjoint vectors. The analytic functions can be found by solving a Riccati matrix difference equation and a matrix difference equation. The compensation term can be obtained by a recursion formula that solves adjoint vector equations.
得到的最优输出跟踪控制律由状态向量的线性解析函数和伴随向量级数形式的补偿项组成,其解析函数由一次性求解Riccati矩阵差分方程和矩阵差分方程得到,补偿项由求解伴随向量差分方程的递推公式得到。
-
It is difficult to get better performance in document clustering due to too many undiscriminating terms. In our study, we propose the mechanism of summary to solve the problem about too many undiscriminating terms.
不过,在使用向量空间模型时,通常会伴随著过多的杂讯,使得最后文件群集的成效被影响。
- 更多网络解释与伴随向量相关的网络解释 [注:此内容来源于网络,仅供参考]
-
adjoint wave function:(量子)伴波函数
adjoint vector | 伴随向量 | adjoint wave function | (量子)伴波函数 | adjoint | 伴随矩阵
-
adjoint vector space:伴随向量空间
伴随变量(数) adjoint variable | 伴随向量空间 adjoint vector space | 转置伴随行列式 adjugate determinant
-
adjoint transformation:伴随算子
adjoint system of differential equations 微分方程的伴随系 | adjoint transformation 伴随算子 | adjoint vector 伴随向量
-
adjoint vector:伴随向量
adjoint transformation 伴随算子 | adjoint vector 伴随向量 | adjunct 代数余子式