- 更多网络例句与代数结构相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Based on the filtered Lie algebra of the universal enveloping algebra, the algebraic structure of projected subsystems are studied. It is proved that they have simple decompositions, and the construction of the representations is given as well as the corresponding criterion for project limit controllability.
基于泛包络代数的滤李代数结构,研究了投影子系统的代数结构,证明它们具有简单的分解形式,并给出了它们的表示的构造方法和投影极限能控性的判别定理。
-
Linear Algebra is mainly a subject which studies the linear structure of finite dimensional linear space and its linear transformation while linear concept is in itself from the old Euclid Geometry. The concept of "Linear Space" is a kind of algebraic abstract. In many fields of modern engineering project and technology, because of the influence of computer and graph showing, the algebraic disposal of geometric questions, the visual disposal of algebraic questions, algebra and geometry are tightly combined.
线性代数主要是研究有限维线性空间及其线性变换这一代数结构的学科,而线性概念究其根源则是来自古老的Euclid几何,线性空间概念是几何空间的一种代数抽象,在现代工程技术的许多领域里,由于计算机及图形显示的强大威力,几何问题的代数化处理,代数问题的可视化处理,把代数与几何更加紧密地结合在一起。
-
Fuzzy logic is studied with algebraic tools in this paper. A kind of algebraic abstract of fuzzy logic, Implication Algebra on a partial ordered set, is given. The relations between Implication Algebra and other algebraic structures, such as MV-Algebra and Heyting Algebra etc., and the filter and the structure of Implication Algebra on a partial ordered set are studied.
本文的目的是使用代数工具对模糊逻辑进行研究,给出模糊逻辑的一类代数抽象,即偏序集上的蕴涵代数,研究偏序集上蕴涵代数与其它代数结构,如MV-代数,Heyting代数之间的关系,以及偏序集上蕴涵代数的滤子与其结构等。
-
It is very important to investigate presented algebraic structure from new viewpoint, as well as aim at getting better results from an algebraic structure with few conditions.
从新的角度观测研究已有代数结构,在较少条件的代数结构中,期望得到较好的结论,具有重要的现实意义。
-
The course contains four sections as follows: mathematical logic (including basic concepts of propositional logic and predicate logic, propositional calculuses and inference theories), set theory (including set algebras, relations, functions and cardinal numbers), algebraic structure (including algebraic systems, semigroups and groups, rings and fields, lattices and Boolean algebras), graph theory (including basic concepts of graph, Euler graphs and Hamiltonian graphs, trees, planar graphs and coloring graphs, some special vertex subsets and edge subsets).
本课程包含四部分内容:数理逻辑(包含命题逻辑与一阶逻辑的基本概念、等值演算以及推理理论),集合论(包含集合代数、二元关系、函数和基数),代数结构(包含代数系统、半群与群、环与域、格与布尔代数),图论(包含图的基本概念、欧拉图与哈密顿图、树、平面图及图的着色、图的某些特殊的顶点子集与边子集)。
-
We give some examples of BiFrobenius algebras based on the extensions of algebras and coalgebras . Let H be a bialgebra of finite dimension . Then T= H⊕H* has an algebra structure and a coalgebra structure also . We discuss the properties of T , and get the necessary and sufficient condition for T to be a BiFrobenius algebra .
然后根据代数余代数的平凡扩张给出一类BiFrobenius代数的例子,设H是有限维双代数, T= H⊕H*既有代数结构也有余代数结构,研究T的性质,给出了T成为BiFrobenius代数的充要条件,即定理3.9。
-
In section one, we introduce some background of the topic, in section two we review some basic and recent results about the structure and hierarchies of the computably enumerable degrees which are closely related to our topic- the algebraic structure of the plus cupping Turing degrees, in section three, we outline the basic principles of the priority tree argument, one of the main frameworks and tools of theorem proving in computability theory, and in section four, we prove a new result concerning the algebraic structure of the plus cupping Turing degrees that there exist two computably enumerable degrees a, b such that a, b ? PC, and the join a V b of a and b is high.
度结合为0′。本篇论文分为4个部分:第一部分介绍了这个领域的一些背景知识;第二部分主要回顾了前人在研究可计算枚举度的结构和层谱时所取得的一些基本和最新结果,这些结果与我们的主题—加杯图灵度的代数结构密切相关;在第三部分中,我们概要的描述了优先树方法的基本原理,此方法是可计算性理论中定理证明的一个重要框架和工具;第四部分证明了一个加杯图灵度代数结构的新结果:存在两个可计算枚举度a,b,满足a,b∈PC,而且a和b的并a∨b是一个高度。
-
The most famous rough algebras are Rough Double Stone Algebra, Rough Nelson Algebra and Approximation Space Algebra, and their corresponding general algebra structures are regular double Stone algebra, semi-simple Nelson algebra and pre-rough algebra respectively.
其中最有影响的粗代数分别是粗双Stone代数、粗Nelson代数和近似空间代数,它们对应的一般代数结构分别是正则双Stone代数、半简单Nelson代数和预粗代数。
-
According to the rough structure and algebra structure, the main work is to study the application of rough set theory on algebra system-groups and rings in this thesis. So that rough algebra system is built better perfectly.
本文根据粗糙结构和代数结构,研究了粗糙集理论在代数系统——群、环上的应用,以此建立比较完善的粗糙代数系统。
-
In this paper,the main work is to extended the premitive model of rough sets;Accorting to the Rough structure and algebra structure,the main work is to study the application of rough set theory on algebra system-group,so that rough algebra system is better perfectly.
本文在现有的Pawlak粗糙集模型基础上,对模型进行推广;根据粗糙结构和代数结构及已有的研究成果的基础上,更进一步地研究了粗糙集理论在代数系统一群上的应用,以此建立较为完善的粗糙代数系统。
- 更多网络解释与代数结构相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Boolean algebra:布林代数
代数拓扑(Algebraic topology)是使用 的工具来研究 的 分支. 上,一个态射(morphism)是两个数学结构之间保持结构的过程的一种抽象. (布林代数)(Boolean algebra)是基本 的基础 .
-
algebraische Koerpererweiterung algebraic field extension:代数函数扩张
algebraische Funktion algebraic function 代数函数 | algebraische Koerpererweiterung algebraic field extension 代数函数扩张 | algebraische Struktur algebraic structure 代数结构
-
algebraic structure:代数结构
, > 的子群 计算机科学与技术学院 第5章 代数结构(Algebraic Structure ) 章 代数结构( 小结: 本节介绍了群与子群的概念及其性质. 小结 本节介绍了群与子群的概念及其性质. 重点掌握群的性质和判别子群的充分必要条件.
-
algebraische Struktur algebraic structure:代数结构
algebraische Koerpererweiterung algebraic field extension 代数函数扩张 | algebraische Struktur algebraic structure 代数结构 | algebraische Zahl algebraic number 代数数
-
CELP conjugate structure algebraic CELP:结合结构代数
结合结构代数 CELP conjugate structure algebraic CELP | 合取式 conjunct | 接合,兼算 conjunction
-
Lie Algebra:李代数
当分析和线性代数走在一起,产生了泛函分析和调和分析;当分析和群论走在一起,我们就有了李群(Lie Group)和李代数(Lie Algebra). 它们给连续群上的元素赋予了代数结构. 我一直认为这是一门非常漂亮的数学:在一个体系中,拓扑,
-
semigroup:半群
到此为止,我们的分析就要结束了,我的叶子(leaf)是一个代数结构,说得再具体些是一个半群(semigroup),但不是一个群. 最后想告诉大家的是,大家可以定义自己的代数结构,然后来看一下,自己所定义的代数结构是一个群(group)呢,
-
Set Theory Algebraical Structure:集合论与代数结构
集成光学 Integrated Optics | 集合论与代数结构 Set Theory Algebraical Structure | 计量经济学 Measure Economics
-
Set Theory and Algebraical Structure:集合论与代数结构
集成光学 Integrated Optics | 集合论与代数结构 Set Theory and Algebraical Structure | 计量经济学 Measure Economics
-
Set Theory %26amp; Algebraical Structure:集合论与代数结构
极限分析 limit analysis | 集合论与代数结构 set theory %26amp; algebraical structure | 技术管理 technological management