- 更多网络例句与代数数域相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Suppose G is a finite group, then QG is a semisimple Q-algera, obviously ZG is a Z-order of QG,we denote the maximal Z-order by ?.If G is not abelian, it is not an easy thing to determine г; if G is an abelian group, then QG is isomorphic to the direct sum of a finite number of number fields, and r is the direct sum of these rings of algebraic integers of those number fields, but which elements of QG belong to r is not clear.
设G是一个有限群,那么QG是一个半单代数,ZG是QG的一个Z-序,设Γ是QG的一个极大Z-序,当G是一个非交换群时,Γ的求解是困难的问题;当G是一个交换群时,QG同构于有限多个数域的直和,Γ相应的就是各数域代数整数环的直和,但Γ具体是QG中那些元素不清楚。
-
In this paper, we summarize the foundations of Algebraic function fields, algebraic curves over finite fields and algebraic geometry codes, then we focus on the dimensions of codes on the quotient of the hermitian curves, by using the theory of weierstrass semigroup and the idea of Ho...
我们在系统地总结了代数函数域,有限域上的代数曲线和代数几何码的基本知识的基础上,利用Weierstrass子半群理论,使用Homma和Kim的方法,讨论了Hermite曲线商域上码的维数问题,得到的主要结果如下: 1。
-
Quadratic algebraic function fields are studied here.Fundamental units forseveral types of such fields are determined explicitly.
本文研究了二次代数函数域,明显决定了几类实二次函数域的基本单位,决定了多类二次函数域的理想类数的下界,给出了类。。。
-
Factoring integers ; algorithm ; algebraic number field
整数分解;算法;代数数域
-
The computation of the square root of a huge algebraic number is the last stage of the N7FS.
代数平方根的计算是数域筛法的一个必要环节。
-
At present, frequency-wavenumber domain expression has been derived by Lie algebra integral and exponential mapping, and we need to research the method of transform from wavenumber domain to space domain.
目前,通过李代数积分和指数映射的研究,已经导出频率波数域表达式,需要研究波数域到空间域变换的实现方式。
-
In order to solve the problem,We proposed a simple formula for computing paraxial travel time of single-way wave operator. The formula is based on the forward and inverse transform between time-space domain to frequency-wavenumber domain and from vector field to exponential manifold. The travel time are expressed as polynomials of the horizontal offset between the two points, and the single-square-root operator in frequency-wavenumber domain are expressed as polynomials of wavenumber. Coefficients of travel time polynomials and that of single-square-root operator are related each other and calculated by Lie algebraic integrand, exponential map and the saddle-point method.
针对此,基于时间空间域到频率波数域和向量场到指数流形上的正反变换,提出了计算单程波算子旁轴走时的简便公式,将走时表示成空间变量(地面点到地下相点的水平距离)的多项式,将频率波数域单平方根算子表示成波数的多项式,运用Lie代数积分、指数映射和鞍点法将走时多项式的系数与单平方根算子的系数联系起来,运用单平方根算子的系数计算走时多项式的系数。
-
In order to solve the problem, We proposed a simple formula for computing paraxial travel time of single-way wave operator. The formula is based on the forward and inverse transform between time-space domain to frequency-wavenumber domain and from vector field to exponential as polynomials of wavenumber. Coefficients of travel time polynomials and that of single-square-root operator are related each other and calculated by Lie algebraic integrand, exponential map and the saddlepoint method.
针对此,基于时间空间域到频率波数域和向量场到指数流形上的正反变换,提出了计算单程波算子旁轴走时的简便公式,将走时表示成空间变量(地面点到地下相点的水平距离)的多项式,将频率波数域单平方根算子表示成波数的多项式,运用Lie代数积分、指数映射和鞍点法将走时多项式的系数与单平方根算子的系数联系起来,运用单平方根算子的系数计算走时多项式的系数。
-
Secondly, linear algebra, can create a polynomial coefficient and multiple lines between the matrix-style counterparts, so as to transform line for the primary use of the domain P polynomial the greatest common factor.
其次,在线性代数中,可以建立多项式的系数与多行矩阵表示式之间的对应关系,从而利用初等行变换求数域P上的多项式的最大公因式。
-
II, Polynomial rings on a general field( on contrast of those over a number field): concepts of ring, ideals, field and several special rings as domains, principal ideal domains and unique factorization domains, the unique factorization theory of polynomial rings.
二、一般域上的多项式理论(是数域上多项式理论的推广):学习环、域和几类特殊结构的环(整环、主理想环,唯一分解环等)的概念,多项式环的唯一分解定理;三、线性代数:讲述一般数域上的向量空间理论(是数域上向量空间理论的继续和推广),模的概念,主理想环上的模的结构及其线性变换的若当标准型等;四、一元多项式的解及域论:学习域扩张及其相关概念,伽罗瓦理论,用伽罗瓦定理判断根式解的存在性。
- 更多网络解释与代数数域相关的网络解释 [注:此内容来源于网络,仅供参考]
-
absolute class field:绝对类域
给出的定义后来被改称为绝对类域(absolute class field).高木证明了:代数数域k的任何阿贝尔扩张K均可表示成k上的类域.此定理通常被称为是类域论的基本定理或主定理.1920年9月25日高木贞治在法国斯特拉斯堡举行的世界数学家大会(9月22日�
-
absolute algebraic number field:绝对代数数域
absolute alcohol | 无水酒精 | absolute algebraic number field | 绝对代数数域 | absolute altimeter | 绝对测高计
-
finite algebraic extension:有限代数扩张
finite algebra 有限代数 | finite algebraic extension 有限代数扩张 | finite algebraic number field 有限代数数域
-
algebraic number field:代数数域
algebraic number 代数数 | algebraic number field 代数数域 | algebraic number theory 代数数论
-
finite algebraic number field:有限代数数域
finite algebraic extension 有限代数扩张 | finite algebraic number field 有限代数数域 | finite alphabet 有限字母
-
relative algebraic number field:相对代数数域
relative air-density 相対空気密度 | relative algebraic number field 相对代数数域 | relative altitude position 相对高度位置
-
algebraic groups over an algebraic number field:数域上代数群
数域的判别式|discriminant of number field | 数域上代数群|algebraic groups over an algebraic number field | 数值逼近|numerical approximation
-
algebraic number:代数数
ial 2) 在代数数(或者函数)域求值 命令格式: evala(expr); # 对表达式或者未求值函数求值 evala(expr,opts); #求值时可加选项(opts) 所谓代数数(Algebraic number)就是整系数单变量多项式的根, 其范围比有理数大, 真包含 于实数域,
-
arithmetic of algebraic number fields:代数数域的数论
arithmetic number 正实数 | arithmetic of algebraic number fields 代数数域的数论 | arithmetic of algebras 代数的数论
-
arithmetic of algebras:代数的数论
arithmetic of algebraic number fields 代数数域的数论 | arithmetic of algebras 代数的数论 | arithmetic of local fields 局部域的数沦