- 更多网络例句与代数扩张相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This process is actually the process of algebraic extension; also it is the basic way of algebra: organizing some objects into an operation system, and then study the relationship between elements or parts of the system.
这实际上是代数扩张的做法,也是代数的本质:将一些对象组织成一个运算体系,研究这个体系中各个个体之间以及部分与全体之间的关系。
-
In the second part , according to the spirit of algebraic extension , we first introduce the definition of coalgebra extension and trivial extension of a coalgebra .
在第一节,我们介绍了代数扩张,代数平凡扩张,Frobenius代数,coFrobenius余代数等概念,着重阐述了引理1.5。,即引理1.5。
-
Computing integral closure of a finite extension is not only an important problem in commutative algebra, but also in algebraic geometry and algebraic number theory.
计算有限扩张的整闭包不但是交换代数中的一个核心问题,也很受代数几何以及代数数论发展的推动。
-
Based on the methods and techniques of covering theory, the structure of module category of tame concealed algebra, one-point extension, vector space category, finite enlargement, degeneration theory, stable equivalence and combinatorial method, we will classify all of the three-point algebras with Gabriel quiver the system quiver Q according to representation type. We get the classification theorem: Let A=kQ/I be a three-point algebra given by the system quiver Q.
本文综合利用覆盖理论,tame concealed代数模范畴的结构,单点扩张,向量空间范畴,有限enlargement,退化理论,稳定等价以及组合的方法等多种方法和技巧,将所有由系统箭图Q给出的三点代数按表示型进行分类,得到如下分类定理:Q是系统箭图,I是kQ的一个admissible理想。
-
We give some examples of BiFrobenius algebras based on the extensions of algebras and coalgebras . Let H be a bialgebra of finite dimension . Then T= H⊕H* has an algebra structure and a coalgebra structure also . We discuss the properties of T , and get the necessary and sufficient condition for T to be a BiFrobenius algebra .
然后根据代数余代数的平凡扩张给出一类BiFrobenius代数的例子,设H是有限维双代数, T= H⊕H*既有代数结构也有余代数结构,研究T的性质,给出了T成为BiFrobenius代数的充要条件,即定理3.9。
-
Lastly,Using the extension theory of〓-algebras founded and developed by Brown-Douglas-Fillmore in 70s,inparticular,using the homotopy invariance of the extensions and the indexformule of Toeplitz operator matrices,the paper characterized the automorphismgroup of the continuous function symbol Toeplitz 〓-algebra in terms of thetopological degrees of the continuous mappings on the n-dimensional sphere.
最后,本文利用Brown-Douglas-Fillmore在七十年代建立并发展起来的C*-代数扩张理论,尤其是扩张的同伦不变性,以及Toeplitz算子矩阵的指标公式,通过球面上连续映射的拓扑度,刻划了高维球面Hardy空间上连续符号Toeplitz 〓代数的自同构群。
-
By using Jordan-Hlder type theorem of table algebras, we prove that table algebras satisfying nilpotent extension condition are nilpotent, which does not correspond to extension problems of nilpotent groups exactly.
本文研究了幂零表代数的一个有趣的性质,利用表代数的Jorda-Hlder型定理,证明了表代数满足幂零被幂零扩张仍是幂零的,但有限幂零群没有这样的扩张。
-
The so-called AT-algebras are inductive limits of finite direct sums of matrices over the extension algeras of circle algebra by K, where K is the C~*— algebra of all compact operators on a separable infinite dimensional Hilbert space.
若V_*与V_*同构,且保持单位元等价类;T与T仿射同胚,且同构映射与同胚映射相容,则存在E与E′的同构导出上述同构和同胚,所谓AT-代数即为圆代数通过κ的本质酉扩张的矩阵代数的有限直和的归纳极限,这里κ为可分的无限维复Hilbert空间上的紧算子全体,不变量中的V*为三变元Abel半群,T为迹态空间,[1]为单位元所在的Murray-von Neumann等价类,r_E为连接映射。
-
In the fifth chapter,we study dipolarizations in some quadratic Lie algebras.Inthe first section,we obtain some results on the classification of dipolarizations in gen-eral quadratic Lie algebras,and prove that there exist dipolarizations in the solvablequadratic Lie algebras whose Cartan subalgebras consist of semisimple elements.
第五章讨论了某些二次李代数的双极化,在第一节中,我们给出了二次李代数的双极化的一些分类结果;特别证明Cartan子代数是由半单元组成的二次李代数上存在双极化,第二节确定了四维扩张Heisenberg代数的所有双极化,在第三节中,我们构造了2n+2维扩张Heisenberg代数的六类双极化,我们发现两个不同于半单李代数情形的有趣事实:(1)在扩张Heisenberg代数上同时存在对称和非对称双极化;(2)对应于扩张Heisenberg代数的双极化的特征元有的是半单的有的是幂零的。
-
In this paper, we characterize the multiplier algebras of JC-algebras by double centralizers , and study the relationship between multiplier algebra M of complex C*-algebra A and C*-algebra C* M(Asa generated by the multiplier algebra of JC-algebra Asa, the self-adjoint part of A, Finally, we study the extension of JB-algebras.
本文用双中心子刻画了JC代数的乘子代数,并且研究了复C*-代数的自伴部分的乘子代数生成的C*-代数与原C*-代数的乘子代数之间的关系,最后研究了JB代数的扩张。
- 更多网络解释与代数扩张相关的网络解释 [注:此内容来源于网络,仅供参考]
-
algebraic extension:代数扩张
algebraic expression 代数式 | algebraic extension 代数扩张 | algebraic form 代数形式
-
algebraic extension:代数扩大;代数扩张
代数式示法 algebraic expression | 代数扩大;代数扩张 algebraic extension | 代数形式 algebraic form
-
algebraic extension:代数扩域(代数扩张)
"代数元素","algebraic element" | "代数扩域(代数扩张)","algebraic extension" | "对应的通用映射","corresponding universal map"
-
simple algebraic extension:简单代数扩张
set 集合 | Simple algebraic Extension 简单代数扩张 | Simple group单纯群
-
separable algebraic extension:可分代数扩张
可分代数闭包|separable algebraic closure | 可分代数扩张|separable algebraic extension | 可分对策|separable game
-
finite algebraic extension:有限代数扩张
finite algebra 有限代数 | finite algebraic extension 有限代数扩张 | finite algebraic number field 有限代数数域
-
algebraic extension of a field:域的代数扩张
algebraic equivalence | 代数等价 | algebraic extension of a field | 域的代数扩张 | algebraic family | 代数族
-
algebraische Koerpererweiterung algebraic field extension:代数函数扩张
algebraische Funktion algebraic function 代数函数 | algebraische Koerpererweiterung algebraic field extension 代数函数扩张 | algebraische Struktur algebraic structure 代数结构
-
algebraic form:代数形式
代数扩大;代数扩张 algebraic extension | 代数形式 algebraic form | 代数函数 algebraic function
-
finite algebraic number field:有限代数数域
finite algebraic extension 有限代数扩张 | finite algebraic number field 有限代数数域 | finite alphabet 有限字母