- 更多网络例句与代数化相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Linear Algebra is mainly a subject which studies the linear structure of finite dimensional linear space and its linear transformation while linear concept is in itself from the old Euclid Geometry. The concept of "Linear Space" is a kind of algebraic abstract. In many fields of modern engineering project and technology, because of the influence of computer and graph showing, the algebraic disposal of geometric questions, the visual disposal of algebraic questions, algebra and geometry are tightly combined.
线性代数主要是研究有限维线性空间及其线性变换这一代数结构的学科,而线性概念究其根源则是来自古老的Euclid几何,线性空间概念是几何空间的一种代数抽象,在现代工程技术的许多领域里,由于计算机及图形显示的强大威力,几何问题的代数化处理,代数问题的可视化处理,把代数与几何更加紧密地结合在一起。
-
All real simple Malcev algebra,are classified according to whether or not they have a compatible complex structure and simultaneously we give all the invariant bilinear forms by the killing form of the real simple Malcev algebra or the killing form of it s complexification .
研究实单Malcev代数上的不变双线性型,仿照李代数的情形给出实Malcev代数上的容许复结构、实Malcev代数的复化以及Malcev代数上的不变双线性型等概念,并通过对实单Malcev代数上容许复结构的讨论,将实单Malcev代数上的不变双线性型分为两种情形。
-
From the perspective of the variational discussion of Lagrange\'s contributions to the principles and analyzation of mechanics,the interaction between the calculus of variations and mechanics,especially the variational principles is made clear.
结合拉格朗日微积分代数化方案和18世纪可积性条件的研究,探讨了拉格朗日关于变分法基础研究的数学背景及相关工作;通过对《分析力学》中静力学约束平衡问题的细致考察,系统探讨了变分法中乘子法则的力学渊源、提出过程及意义。
-
Libermann.The early researcheson this kind of manifolds were closely related to Physics and Mechanics.But since1991,S.Kaneyuki published his result on the algebraic condition for the existence ofinvariant〓structures on a coset space,Lie theory has played the most impor-tant role in the study of this kind of manifolds.In particular,dipolarizations in a Liealgebra are closely related to the homogeneous〓manifolds.Dipolarizationsin semisimple Lie algebras and the homogeneous〓manifolds associated withthese dipolarizations have been studied by S.Kaneyuki,Z.X.Hou and S.Q.Deng.Inthe partⅡ of this thesis we study the dipolarizations in some quadratic Lie algebrasand the homogeneous parakahler manifolds associated with these dipolarizations.
Libermann给出的,早期的有关类流形的研究与物理和力学密切相关,自从1991年金行壮二发表了陪集空间上存在不变仿凯勒结构的代数化结果后,李群及李代数理论在这类流形的研究中起着主要作用,特别地,李代数的双极化与这类流形密切相关,半单李代数的双极化的相关几何,金行壮二,候自新和邓少强等人已作了研究,二次李代数是比半单李代数更广且带有非退化不变双线性型的李代数,本文主要研究了二次代数的双极化及相关几何。
-
The vector has the rich actual background and the widespread application function, it has the algebra and the geometry dual statuses, causes the algebra geometrization, the geometry algebra, has communicated the algebra, the geometry and the trigonometric function, has the good analysis method and the complete structure.
向量具有丰富的实际背景和广泛的应用功能,它具有代数和几何双重身份,使代数几何化、几何代数化,沟通了代数、几何与三角函数,具有良好的分析方法和完整的结构。
-
In §2, four met0hods for solving the integrable second order homogeneous linear ordinary differential equation with variable coefficientsy +py'+Qy=0 are given. Thus, the equation can be solved by means of elementary integrals and algebra.
给出了二阶变系数线性方程y"+py'+Qy=0在可积的条件下的几种不同的求解方程,从而说明了这种可积的二阶方程不仅能用初等积分法求解而且也可以把它代数化,并使其通解公式化。
-
And using thinking of evolvable hardware design,it had realized a novel way in simplifying the given logic function,which was different from conventional method,such as algebra way and Karnaugh map way.Experiments showed that evolvable hardware method could solve simplification of large scale logic function.
作者在对演化硬件设计理论的学习研究中,尝试了用遗传算法在可编程逻辑器件上应用来实现对某一给定的逻辑函数进行化简。2代数法和卡诺图法介绍[1]先给定一个逻辑函数F,并对其进行化简:F=A+ABC+AC+CD(1)2.1代数法化简代数法化简就是运用代数的公理、定理和规则对逻辑函数进行化简。
-
Using the concept of Boolean functions and combinatorics theory comprehensively, we investigate the construction on annihilators of Boolean functions and the algebraic immunity of symmetric Boolean functions in cryptography:Firstly, we introduce two methods of constructing the annihilators of Boolean functions, Construction I makes annihilators based on the minor term expression of Boolean function, meanwhile we get a way to judge whether a Boolean function has low degree annihilators by feature matrix. In Construction II, we use the subfunctions to construct annihilators, we also apply Construction II to LILI-128 and Toyocrypt, and the attacking complexity is reduced greatly. We study the algebraic immunitiy of (5,1,3,12) rotation symmetric staturated best functions and a type of constructed functions, then we prove that a new class of functions are invariants of algebraic attacks, and this property is generalized in the end.Secondly, we present a construction on symmetric annihilators of symmetric Boolean functions.
本文主要利用布尔函数的相关概念并结合组合论的相关知识,对密码学中布尔函数的零化子构造问题以及对称布尔函数代数免疫性进行了研究,主要包括以下两方面的内容:首先,给出两种布尔函数零化子的构造方法,构造Ⅰ利用布尔函数的小项表示构造零化子,得到求布尔函数f代数次数≤d的零化子的算法,同时得到通过布尔函数的特征矩阵判断零化子的存在性:构造Ⅱ利用布尔函数退化后的子函数构造零化子,将此构造方法应用于LILI-128,Toyocrypt等流密码体制中,使得攻击的复杂度大大降低;通过研究(5,1,3,12)旋转对称饱和最优函数的代数免疫和一类构造函数的代数免疫,证明了一类函数为代数攻击不变量,并对此性质作了进一步推广。
-
The quantum deformation of a Lie algebra is obtained by adding one parameter q,which is reduced to the original Lie algebra when taking the limit q→1;some properties of the original Lie algebra remain.
在Hopf代数或量子群理论中,构造李双代数的量子化是产生新的量子群的一个十分重要方法,研究李双代数的重要目的之一就是对其量子化。
-
Based on the idea of solving nonlinear evolution equations, algebraic method, algorithm reality and mechanization, in Chapter 3, we firstly present the new generalized tanh function method, and apply it to construct the exact solutions of the (2+1)-dimensional Kadomtsev-Petviashvili equation.
第三章基于非线性发展方程求解代数化、算法化、机械化的指导思想,以吴方法和符号计算为工具,首先提出一种新的广义tanh函数方法,并将其应用于(2+1)-维Kadomtsev-Petviashvili方程的精确解构造。
- 更多网络解释与代数化相关的网络解释 [注:此内容来源于网络,仅供参考]
-
algebraic variety:代数簇
[摘要]局部化(Localization)方法是交换代数中一个重要工具,通过研究一个代数簇(Algebraic Variety)在某点或某点附近的局部性质,往往可以把握代数簇的整体特性.
-
algebraically independent elements:代数无关元
algebraically equivalent 代数等价的 | algebraically independent elements 代数无关元 | algebraization 代数化
-
algebraization:代数化
algebraically independent elements 代数无关元 | algebraization 代数化 | algebro geometric 代数几何的
-
algebro geometric:代数几何的
algebraization 代数化 | algebro geometric 代数几何的 | algebroid function 代数体函数
-
quantized universal enveloping algebra:量子化泛包络代数
量子估值|quantum estimation | 量子化泛包络代数|quantized universal enveloping algebra | 量子检测|quantum detection
-
reduced Jordan algebra:约化约当代数
reduced join 约化联接 | reduced Jordan algebra 约化约当代数 | reduced kVA tap 低负荷抽头
-
localization:局部化
[摘要]局部化(Localization)方法是交换代数中一个重要工具,通过研究一个代数簇(Algebraic Variety)在某点或某点附近的局部性质,往往可以把握代数簇的整体特性.
-
reduced algebra:约化代数
reduce 约化 | reduced algebra 约化代数 | reduced automaton 约化自动机
-
reduced automaton:约化自动机
reduced algebra 约化代数 | reduced automaton 约化自动机 | reduced clifford group 约化克里福特群
-
complexification of a Lie algebra:李代数的复化
李代数的表示|representations of a Lie algebra | 李代数的复化|complexification of a Lie algebra | 李代数的根|radical of a Lie algebra