英语人>词典>汉英 : 亚硝化菌 的英文翻译,例句
亚硝化菌 的英文翻译、例句

亚硝化菌

基本解释 (translations)
nitrosobacteria

词组短语
nitrosifying organisms
更多网络例句与亚硝化菌相关的网络例句 [注:此内容来源于网络,仅供参考]

Nitrite oxidoreductase was responsible for the nitrification of nitrite-oxidizing bacteria, which was coded by norB gene and others.

硝化菌主要由两大生理群组成:氧化氨氮为亚硝酸盐氮的是亚硝酸菌;氧化亚硝酸盐氮为硝酸盐氮的是硝酸菌,硝酸菌中负责硝化作用的酶是亚硝酸氧化还原酶,这个酶由norB等基因编码,因而对这个酶和基因的研究将有助于氮污染的控制和防治。

Raise bacterium from different, inferior nitrify bacterium and nitrify bacterium 3 person in light of the value of SOUR, different raises bacterium active to be compared in the lower level of filter strong, and inferior nitrify bacterium, nitrify bacterium raise bacterium to be in oneself medium, upper levels of the system is more active.

从异养菌、亚硝化菌和硝化细菌三者的sOUR的值来看,异养菌活性在滤池的下层比较强,而亚硝化菌、硝化菌等自养菌则在系统的中、上层比较活跃。

In this paper, adopted augmenting culture in nitrite bacteria culture media and the method of silica gel plate isolation,31 strains of bacteria were isolated from vegetable garden soil of our school. The color reaction test was carried out with Griess reagent and culture fluid, which was regarded as the index to determine producing NO2- or not. 13 strains which color were deep were obtained and they were further rescreened by doing nitrite test. A strain N4(coded N4,the same to the following)with higher rate of nitrosification was picked up after rescreened; A strain B08( coded B08 ,the same to the following) with higher rate of denitrification was obtained after isolated and rejuvenated from our lab conserving mixed denitrifying bacteria culture.

本研究采用亚硝化细菌富集培养基选择培养和硅胶平板分离法,从本校农场菜园土中分离到31株细菌,以格利斯试剂对培养液的反应颜色深浅作为指标衡量其产NO_2~-的多少,经初筛从分离株中筛选出13株格利斯试剂反应颜色较深的菌株,再对这13株菌作亚硝化试验,最终选出一株亚硝化速率较高的菌株(编号为N_4,下同);另外,通过对本实验室保存的反硝化细菌混合菌液进行分离复壮,筛选出一株反硝化速率高的菌株编号为B_

The most probable number measurement showed that the overwhelming quantity of nitrosobacteria immobilized on biofilm was the main reason for stable and high nitrite accumulation in the reactor.

最大可能计数法测定发现,亚硝化菌在数量上的绝对优势是反应器能始终保持高效稳定的亚硝氮积累的主要原因。

According to the above study result, the diversity of microorganisms population in the SUFR system is complex and the bio-community formed in the SUFR system is stable. The close relations between abundance of bacteria and nutrients were found. The correlation between heterotrophic bacteria and COD was 0.949. The correlation between organic phosphate bacteria and TP was 0.815. The correlation between nitrosobacteria and NH3-N was 0.909. The correlation between disnitrifier bacteria and TN was 0.653. These inneglectable great factors effecting on phosphorus-uptake and phosphorus-release of phosphorus accumulating organisms are the influent COD、the concentration of DO、the sludge retention time、the temperature. The diversity of organic phosphate bacteria population in the SUFR reactor was complex and there is no phosphate bacteria taking the absolute superiority in quantity. The near-native pure culture method powerfully complement the traditional pure culture technique and enrich culture technique. The sludgy bioactivity is very good in whole SUFR reactor. By the quality of being biochemistry, the anaerobic phase is higher than anoxic phase and the anoxic phase is higher than aerobic phase of SUFR.

通过以上试验内容研究发现,SUFR 系统中的微型动物种群较多,微生物生态系统稳定;系统中微生物的数量与营养盐的含量密切相关,其中总异养菌与COD的相关系数r 为0.949,有机磷细菌与TP 的相关系数r 为0.815,亚硝化菌与NH4+-N的相关系数r 为0.909,反硝化菌的数量和TN 的相关系数r 为0.653;污水生物除磷工艺中进水COD 的浓度、DO 浓度、泥龄的长短、温度都是影响聚磷菌释磷及吸磷效果的不可忽视的因素;SUFR 系统中的磷细菌呈现种群多样化的趋势,没有占绝对优势数量的磷细菌;微孔滤膜近自然培养法是对传统纯培养技术和富集培养技术的有力补充;整个SUFR 反应器系统中污泥的生物活性很好,就可生化性来讲,厌氧反应器大于缺氧反应器大于好氧反应器;按照动力学方程式求出的细胞生长动力学特征值和SUFR 脱氮除磷系统工艺的实测值结果基本吻合。

Experimental results showed that, in this process, the optimal pH of the shortcut nitrification was 8.0~8.5; when the pH was less than 6,the nitrification is completely inhibited; when the pH was 6~7, at the end of aeration, the Nitrobacteria become the dominant bacteria because of the dropping of the free ammonia concentration. It is known to all, the activity of the Nitrobacteria and Nitrosomonas was affected by FA concentration, so nitrification was affected by FA concentration. According to the author's research results, the FA concentration which inhibit the Nitrobacteria was below 1.0mg/L,which inhibit the Nitrosomonas was above 10mg/L.

实验研究结果表明:本工艺中,短程硝化反应的最佳pH值在8.0~8.5之间,当pH小于6时,整个硝化反应都会受到抑制,当pH在6~7之间时,随着游离氨浓度的降低,在曝气后期,硝化菌将会占据优势;FA浓度对短程硝化反应的影响是通过对亚硝酸菌和硝酸菌的抑制来实现的,在本研究条件下,游离氨对亚硝酸菌的抑制浓度在10mg/L以上,对硝酸菌的抑制浓度在1.0mg/L以下;温度对短程硝化反应的影响是双重的,既影响微生物的生理活性,又影响FA浓度。

But the effluent ammonium in the anoxic reactor, where enough NO2 were present, was equal to the blank system, and no ammonium was converted to such nitrogen compounds as NO2- and N2 by Nitrosomonas eutropha using NO2 as electron acceptor, which maybe caused by lack of the function bacteria. There were two ANAMMOX reaction pathways in the one-stage autotrophic nitrogen removal system. One way was that after part of NH4+ was oxidized to NH2OH under aerobic conditions, NH2OH and NO2- were converted to N2O under anaerobic conditions, at last N2O was further converted to N2 which realized the nitrogen removal; Another way was that at first NO2- was reduced to NH2OH, NH2OH reacted with NH4+ to form N2H4, which was further converted to N2 subsequently, realizing the nitrogen removal.

结果表明:单级自养脱氮系统内6.72%的氨氮是通过吹脱等物化作用去除的,不超过6.02%的氨氮是通过传统硝化反硝化途径去除的,87.26%左右的氨氮是由自养脱氮途径去除的,自养脱氮反应起主要脱氮作用;在足够NO2存在且缺氧的条件下,单级自养脱氮系统内的出水氨氮浓度与空白反应器相当,NH4+并没有被亚硝化单胞菌以NO2为电子受体氧化为NO2-和N2等化合物而得以去除,可能是因为系统内不存在该代谢功能的亚硝化功能菌;单级自养脱氮系统内存在两条ANAMMOX反应途径:其中一条途径即NH4+在好氧条件下被氧化为NH2OH后,生成的NH2OH与系统内的NO2-在缺氧条件下被转化为N2O,N2O则进一步被转化为N2而实现氮的去除;另外一条途径即NO2-首先被还原为NH2OH,生成的NH2OH则与系统内的NH4+反应生成N2H4,N2H4继续被转化为N2而实现氮的去除。

The population distribution of physiological groups of bacteria,including ammonifying bacteria, denitrifying bacteria, nitrobacteria and nitroso bacteria, organic ph

用最大可能数法和平板计数法,于2002年1月~2003年3月对苏州河水体和底泥中的主要微生物功能菌群——包括有机磷分解菌、无机磷分解菌、氨化菌、亚硝化菌、硝化菌和反硝化菌等进行了生态调查,并分析探讨了它们在苏州河水生态系统中的作用。

The population distribution of physiological groups of bacteria,including ammonifying bacteria, denitrifying bacteria, nitrobacteria and nitroso bacteria, organic phosphate dissolving bacteria and inorganic phosphate dissolving bacteria in water body and sediment of Suzhou Creek are studied with MPN and flat account method from Jan. 2002 to Mar. 2003. The role of these physiological groups of bacteria in Suzhou Creek aquatic ecosystem is discussed.

用最大可能数法和平板计数法,于2002年1月~2003年3月对苏州河水体和底泥中的主要微生物功能菌群——包括有机磷分解菌、无机磷分解菌、氨化菌、亚硝化菌、硝化菌和反硝化菌等进行了生态调查,并分析探讨了它们在苏州河水生态系统中的作用。

The experimental results indicate that the nitrite oxidizers are more sensi-tive to free ammonia than ammonia oxidizers in the wastewater.

结果表明,在高游离氨条件下,硝酸菌比亚硝化菌对游离氨更为敏感,反应体系中亚硝酸盐的平均积累速率远大于硝酸盐的平均积累速率。

更多网络解释与亚硝化菌相关的网络解释 [注:此内容来源于网络,仅供参考]

denitrifying bacteria:反硝化菌

段. 硝化菌(nitrifier)包括亚硝酸菌(nitrite bacteria),亦称氨氧化菌和硝酸菌数反硝化菌(Denitrifying bacteria)是异养菌(反硝化杆菌、荧光假单胞菌),也有

Nitrite bacteria:亚硝酸菌

段. 硝化菌(nitrifier)包括亚硝酸菌(nitrite bacteria),亦称氨氧化菌和硝酸菌数反硝化菌(Denitrifying bacteria)是异养菌(反硝化杆菌、荧光假单胞菌),也有

Nitrobacter:硝化菌

然而,将硝化阶段控制在亚硝化阶段的成功报道并不多见.这是因为,硝化菌(Nitrobacter)能够迅速地将亚硝酸盐转化为硝酸盐.SHARON工艺的成功在于:巧妙地应用了硝化菌(Nitrobacter)和亚硝化菌(Nitrosomonas)的不同生长速率,即在较高温度下,

Nitrobacterieae:硝化菌亚科

Nitrobacteraceae 硝化杆菌科 | Nitrobacterieae 硝化菌亚科 | Nitrosomonas 亚硝化胞菌属

nitrosobacteria:亚硝化菌

nitrosoaniline 亚硝基苯胺 | nitrosobacteria 亚硝化菌 | nitrosobenzene 亚硝基苯

Nitrosococcus:亚硝化球菌属

参与这个阶段活动的亚硝酸细菌主要有 5个属:亚硝化毛杆菌属(Nitrosomonas) ;亚硝化囊杆菌属(Nitrosocystis);亚硝化球菌属(Nitrosococcus);亚硝化螺菌属(Nitrosospira)和亚硝化肢杆菌属(Nitrosogloea).

Nitrosococcus H. Winogradsky:亚硝化球菌属

nitrosation 亚硝化(作用) | Nitrosococcus H. Winogradsky 亚硝化球菌属 | Nitrosocystis H.Winogradsky 亚硝化囊菌属

nitrosomonas:亚硝化单胞菌

水族界向来认定亚硝化单胞菌(Nitrosomonas)将 NH4 转变成 NO2,而硝化杆菌(Nitrobacter)则将 NO2 转变成 NO3,亚硝化单胞菌(Nitrosomonas)和硝化杆菌(Nitrobacter)在水族缸内所扮演的角色其实不如预期!

nitrosomonas:亚硝化胞菌属

Nitrobacterieae 硝化菌亚科 | Nitrosomonas 亚硝化胞菌属 | Nitscheina 泥苔虫属

Nitrosomonas H.Winogradsky:亚硝化单胞菌属

Nitrosogloca H.Winogradsky 亚硝化胶团菌属 | Nitrosomonas H.Winogradsky 亚硝化单胞菌属 | Nitrosospira H.Winogradsky 亚硝化螺菌属