- 更多网络例句与二次导数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Combining the definition of CWT and the derivative property of convolution, we constructed a general method to calculate the approximate derivative of signal through CWT by using the first and second derivative of Gaussian function, Haar, and the first derivative of three-order-Spline function as wavelets. As compared with the other approaches of calculating derivative, which include the numerical differentiation, polynomial filters, Fourier transform, and the recently proposed DWT method, fast calculation and simple mathematical operation were remarkable advantages of CWT method. For the signal corrupted by severe noise (Signal-toNoise Ratio=5), the satisfactory results could also obtained via CWT method through appropriately adiusting the dilations.
在此基础上,(1)结合连续小波变换的特点和卷积的微分性质,提出了使用Gaussian函数的一阶和二阶导数,Haar和三次样条函数的一阶导数作为小波函数的连续小波变换计算信号近似导数的一般性方法,与其他导数计算方法(包括数字微分法,多项式滤波法,Fourier变换法和离散小波变换法)相比,本法简单便捷,计算速度快,对于噪声含量较高的信号(S/N为5),只要适当调节尺度即可获得比较满意的结果。
-
However, the smoothness and convergence of these methods are not satisfactory. Because cubic spline function can be a piecewise, and its second order derivative is continuous, it is smooth and convergent.
但以上算法的光滑性和收敛性不好,而三次样条函数具有连续的二阶导数,且可采用分段函数的形式,具有很好的光滑性和收敛性。
-
If the measurement data are demarcated, the acceleration curve can also be calculated by solving the second order differential coefficient of measurement curve.
如果对测量值进行标定,还可以通过对测量值曲线求二次导数得到振源的加速度曲线。
-
Taking the first boundary condition as an example, it used the second order derivative of the junctions to represent the cubic spline interpolation function, and solved the relative equations with chasing method.
以第1边界条件为例,用节点处二阶导数表示三次样条插值函数,用追赶法求解相关方程组。
-
A kind of method to determine boundary conditions of interpolating quadric spline function with halfknots as conjunction points, which is C 1 continuous but its second derivative function is piecewise constant, is obtained by means of least squares.
鉴于此,本文利用最小二乘法,获得了一种半节点二次插值样条边界条件确定方法,该方法可以保证二次插值样条在半节点处二阶导数的变化最小,这相当于保证了曲率的变化最小。
-
In this paper,we give the error expressions of piecewise linear Lagrange polynomial interpolation and piecewise cubic polynomial interpolation using the Taylor expansions.
中文摘要:本文利用Taylor展开得到三角形上线性Lagrange插值和三次Lagrange插值的导数余项公式,对这些余项公式进行分析,给出了两类能以四阶精度逼近被插函数在对称点的导数值的格式,一种是在均匀剖分时其分片线性插值的相邻单元的导数值的后处理格式,一种是在六片强正规剖分时的三次插值在对称点上的导数值的后处理格式,使得在已知原函数在各节点的值后,通过一个简单的线性计算就可得到原函数在对称点的导数的一个超逼近值,将以往提出的平均导数的二阶精度提高到四阶。
-
Because of the condition of 〓 for two neighbour parametricspline surfaces is too strong,here,instead of it,some simple and practicableconditions of 〓 resulted from the general theorem obtained by Prof.LiuDing Yuan in Chapter 1 were proved,and three 〓 triangular splinesurfaces schemes wre presented:one is piecewise cubic spline surface patcheshaving local 〓 and whole 〓 continuity based on the refined HCTtriangulation,another is the same degree spline surface patches but based onthe refined Powell-Sabin triangulation,the third is piecewise quartic splinesurface patches having local 〓 and whole 〓 continuity based on therefined P-S triangulation.
由于对参数曲面,一阶导数连续的要求较强,我们采用第一章从刘鼎元定理导出的简单实用的几何连续条件,讨论了基于HCT加细三角剖分和P-S加细三角剖分上的两种局部达一阶导数连续而整体有一阶几何连续的分片三次样条曲面构造算法,一种局部达二阶导数连续整体有一阶几何连续的分片四次样条曲面构造方法。
-
Based on the analysis and summary of basic ideas and methods,this thesis proposes two new estimation of error of higher order approximation.
方法二是在等距分布的条件下,基于三次样条插值函数的三弯距算法,通过利用节点处弯距的加权和近似计算区间中点处的二阶导数。
-
Optimization; parametric quadratic convex programming; set-valued map; directional derivative; linear stability; solution-set map; parametric linear programming; error bound; subdifferential map; lower locally directionally Lipschitzian; upper locally di-rectionally Lipschitzian; locally directionally Lipschitzian; convex function; quasidiferential; kernelled quasidiferential; quasi-kernel; star-kernel; star-diferential; Penot diferential; subderivative; superderivative; epiderivative; set-valued optimization; set-valued analysis; subdifferential; optimization condition;ε-dual; scalization; generalized subconvexlike-cone;ε-Lagrange multiplier
基础科学,数学,运筹学最优化;集值映射;方向导数;线性稳定;最优解集映射;参数线性规划;参数凸二次规划;误差界;次微分映射;下局部方向Lipschitzian;上局部方向Lipschitzian;局部方向Lipschitzian;凸函数;拟微分;核拟微分;拟核;星核;星微分; Penot-微分;上导数;下导数; Epi-导数;集值优化;集值分析;集值映射的次微分;最优性条件;广义锥次类凸;ε-对偶;数乘;ε-Lagrange乘子
-
According to the objective of second-order derivative related to curvatures, it is proved that there is no difference whether we insert a knot or not. And it presents a characteristic of cubic Hermite interpolation curves.
如果以与曲率有关的二阶导数为目标,证明插入节点与不插入节点的情形是一样的,体现三次Hermite插值曲线的一种特性。
- 更多网络解释与二次导数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
central derivative:中心导数(微商)
有心二次曲线;中心二次曲线 central conic | 中心分解 central decomposition | 中心导数(微商) central derivative
-
second countability axiom:第二可数公理
second component 第二分量 | second countability axiom 第二可数公理 | second derivative 二次导数
-
Second derivative:二次导数
second degree skin burn 第二级烧伤 | second derivative 二次导数 | second derivative spectroscopy 二阶导数谱学
-
second order ordinary differential equation:二阶常微分方程(式)
second derivative 二阶导数,二次导数 | second order ordinary differential equation 二阶常微分方程(式) | second quadrant 第二象限
-
second derivative action:二次导数作用
second derivative 二次导数,二阶导数 | second derivative action 二次导数作用 | second derivative gravity anomaly 重力二次导数异常
-
second derivative calculation:二次微商计算
second deformation 第二期变形 | second derivative calculation 二次微商计算 | second derivative 二阶导数
-
second derivative spectroscopy:二阶导数谱学
second derivative 二次导数 | second derivative spectroscopy 二阶导数谱学 | second emission 二次发射
-
second factor:第二因子
second derivative 二次导数 | second factor 第二因子 | second fundamental form 第二基本形式