- 更多网络例句与严格不等式相关的网络例句 [注:此内容来源于网络,仅供参考]
-
But when refers to linear system of strict inequalities, the linear programming method is not proper, as its result is often the boundary point instead of the solution.
但对严格线性不等式组,线性规划方法一般得到的是的边界点而不是问题的解。
-
Applying the De Caen"s inequality of sum of the squares of the degree and Cauchy"s inequality, we obtain a strict lower bound and a strict upper bound of the largest Laplace eigenvalues only in terms of vertex number of a unicycle graph. Applying the Laplace matrix theorem of trees, we obtain an upper bound of the second smallest Laplace eigenvalues of a unicycle. Extremal graph whose second smallest Laplace eigenvalues reach the obtained upper bound is determined. We also obtain an upper bound of the second largest Laplace eigenvalues in terms of vertex number of the largest connected branch of unicycle graph, and obtain a theoretical method to calculate the second largest Laplace eigenvalues of unicycle graph. We obtain an upper bound of any Laplace eigenvalues in terms of vertex number of a unicycle graph. We also obtain the distribution of Laplace eigenvalues in the inter [0,n] in terms of the matching number.
本文得到了以下几个方面的结果: 1、利用图度平方和的De Caen不等式和Cauchy不等式给出单圈图的最大Laplace特征值仅依赖于顶点数的严格的上下界;利用树的Laplace理论给出了单圈图次小Laplace特征值的一个上界,并刻画了达到该上界的极图;利用子图的连通分支的顶点个数给出了单圈图次大Laplace特征值的一个上界,并给出了单圈图次大Laplace特征值一个理论上的一个求法;利用单圈图的阶数给出了其一般Laplace特征值的一个上界;利用单圈图的匹配数给出其Laplace矩阵谱在区间[0,n]上的分布情况。
-
Many scholars abroad and home have obtained lots of criteria for identifying generalized strictly diagonally dominant matrix by using iterative arithmetic and techniques in matrix theory and inequalities, and studied its properties and applications.
国内外许多学者运用矩阵理论上的一些方法、不等式放缩技巧及迭代算法,获得了广义严格对角占优矩阵的许多判定方法,并对其性质、应用进行了研究。
-
In chapter two, by using the elements of the matrix we first construct some multiplier factors, then, use the properties of αdiagonally dominant matrix and the techniques of inequalities, we give some new determination conditions for generalized strictly diagonally dominant matrix, these theory have improved some existing results.
在第二章中,利用矩阵某些元素,构造出了几个乘积因子,然后利用α-对角占优矩阵的一些性质,结合放缩不等式的技巧,给出了广义严格对角占优矩阵的几个新的判定条件,改善了已有的某些结果。
-
In chapter three, at first we introduces two kinds locally double αdiagonally dominant matrix from the concept of αdiagonally dominant matrix, by using this conception and the properties of αdiagonally dominant matrix and the techniques of inequalities, we discuss the relation of locally double αdiagonally dominant matrix and generalized strictly diagonally dominant matrix, according to these relations we obtain some effective criteria for generalized strictly diagonally dominant matrix.
在第三章中,首先由α-对角占优矩阵的定义,引进了两类局部双α对角占优矩阵,并利用它们及α-对角占优矩阵的性质,结合放缩不等式的技巧,讨论了局部双α对角占优矩阵与广义严格对角占优矩阵的关系,并由此得到判定广义严格对角占优矩阵的几个实用准则。
-
Firstly, based on the stability criterion for the nominal discrete singular time-delay system, a sufficient condition for the existence of the static output feedback controller in terms of linear matrix inequality with linear matrix equality constraint is established, which ensures that the resulting closed-loop system is regular, causal and robustly asymptotically stable, and the static output feedback controller is designed by the feasible solution of the linear matrix inequality with linear matrix equality constraint.
首先基于标称离散广义时滞系统的稳定条件,以受限线性矩阵不等式形式,得到闭环离散广义时滞系统正则、因果且渐近稳定的充分条件,同时利用受限矩阵不等式的可行解给出静态输出反馈控制器的设计方法;然后采用矩阵的正交补,把求受限线性矩阵不等式的可行解问题转化为求严格线性矩阵不等式的可行解;最后的数值实例说明了所给方法的有效性和正确性。
-
A left null factor of derivative matrix is introduced, and the sliding surface and the control's parameterization can be obtained by sloving strict LMI.
引入导数矩阵的左零因子,使得滑模曲面及控制器参数的求解可经过求解严格线性矩阵不等式获得,在一定程度上简化了LMI方法在奇异系统变结构控制器设计计算中的计算复杂性。
-
GCH implies that this strict inequality holds for infinite cardinals as well as finite cardinals.
GCH 意味着这个严格的不等式对无限序数和有限序数都成立。
-
Be based on these conditions, construction gives strict linear matrix inequality , filling property proved the Schur that uses matrix next to be below the condition of linear matrix inequality, system of earning closed circuit is asymptotic stability, specific condition feedback gave out to control a law in the meantime.
基于这些条件,构造出严格的线性矩阵不等式,然后利用矩阵的Schur补性质论证了在线性矩阵不等式的条件下,所得闭环系统是渐近稳定的,同时给出了具体的状态反馈控制律。
-
The result shows that the transformation from linear system of strict inequalities to minimax problem avoids the shortage of getting a boundary point solution and is satisfying.
最后在Matlab环境下给出了数值实验,实验结果表明,将严格线性不等式组问题转化为Minimax问题来求解,避免了得到边界点解的情形,得到的结果比较令人满意
- 更多网络解释与严格不等式相关的网络解释 [注:此内容来源于网络,仅供参考]
-
strict inductive limit:严格归纳极限
strict increasing 严格递增 | strict inductive limit 严格归纳极限 | strict inequality 严格不等式
-
strict isotonicity:严格保序性
strict inequality 严格不等式 | strict isotonicity 严格保序性 | strict isotony 严格保序性
-
strong law of large numbers:强大数定律
strong inequality 严格不等式 | strong law of large numbers 强大数定律 | strong markov process 强马尔可夫过程
-
Standard Form for the Equation of a Line:直线标准式
Square Root Rules 平方根规则 | Standard Form for the Equation of a Line 直线标准式 | Strict Inequality 严格的不等式
-
strict inequality:严格不等式
strict inductive limit 严格归纳极限 | strict inequality 严格不等式 | strict isotonicity 严格保序性
-
strict inequality:嚴格的不等式
Standard Form for the Equation of a Line 直线标准式 | Strict Inequality 严格的不等式 | Symmetric 对称
-
strong extremum:强相对极值
strong epimorphism 强满射 | strong extremum 强相对极值 | strong inequality 严格不等式
-
strong inequality:严格不等式
strong extremum 强相对极值 | strong inequality 严格不等式 | strong law of large numbers 强大数定律