- 更多网络例句与丛空间相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper,we prove that two types of isotropic totally real submanifolds with flat normal bundle in a complex projective space must be minimal.
证明了复射影空间中两种类型法丛平坦的全实迷向子流形必是极小的,并在紧致的情形确定了它们的具体形状。
-
This paper presents an IFMC CAD model that consits of a geometry model and a material model, in which the geometry space acts as a base space and the material space acts as a bundle space. In this CAD model, the geometry model is based on the non-manifold model. In addition, a half-face data sturucture, which is derived from the half-edge data structure with the non-manifold feature of IFMC taken into account, is adopted to represent the geometry and topology information of the component. For the material model of IFMC, this paper focuses on the FGM component representation firstly and present a simplex-subdivision based CAD data exchange format, in which the material information is represented as a (n-1) simplex and material distributing feature is represented by the interpolation on the simplex-subdivision. Based on those, a part-building orientation optimization algorithm and an adaptive slicing algorithm for FGM component are presented in the paper. For the IFMC material model, the IFMC material information representation is divided into a meso-scale and a macro-scale representation. In the meso-scale, a concept named parameterized periodic functional meso-structure is presented as a unique form to represent the FGM (the homogeneous materials are regarded as a special FGM), the composite and the functional meso-structure material. The model of PMS is a three-tuple that contains the space state informatation, the material parameter and the material meso-scale distribution feature. The macro-scale material information representation is similar to the FGM components by interpolation of the control parameter of the periodical functional meso-structure based on the simplex-subdivision. Through an example of manufacturing-oriented IFMC CAD data processing, it is proved that the IFMC CAD model and the material information representation and process method proposed in this paper can provide a reliable data support for IFMC digital concurrent design and manufacturing.
本文将理想材料零件CAD模型建立在以几何空间为底空间、以材料空间为丛空间的结构上,使用非流形几何模型作为理想材料零件几何拓扑模型的基础,并在半边数据结构基础上,针对理想材料零件的非流形特征局限内部边界上的特点,给出了一个半面数据结构来表述零件的几何拓扑信息;对于理想材料零件的材料模型,本文先从功能梯度材料零件的信息表述与CAD数据交换和处理入手,将材料信息表述为(n-1)维单纯形,然后通过对三维几何区域的单纯剖分,以插值的方式表述零件材料分布特征;在此基础上,根据功能梯度材料零件分层制造中对CAD数据处理的要求,给出了综合考虑零件几何特征与材料特征的生长方向优化算法和自适应切片算法;而对于文中所定义的理想材料零件,本文将其材料信息表述分解到细观和宏观两个尺度进行,首先给出了细观尺度上参数化的周期性功能细结构概念,以此来统一表述功能梯度材料(单质材料作为特殊的功能梯度材料看待)、复合材料和功能细结构材料;把周期性功能细结构模型化为一个包含空间状态信息、材料构成参数和材料细观分布特征参数的三元组,以表达零件的细观材料特征;对于零件宏观的材料变化特征,则同样在几何区域单纯剖分的基础上,通过对细观尺度上周期性功能细结构控制参数的插值来完成;通过理想材料零件CAD数据处理的算例,验证了本文中理想材料零件CAD模型及材料信息表述与处理方法完全可以为理想材料零件的数字化制造提供可靠的数据支持。
-
This paper presents an IFMC CAD model that consits of a geometry model and a material model, in which the geometry space acts as a base space and the material space acts as a bundle space. In this CAD model, the geometry model is based on the non-manifold model. In addition, a half-face data sturucture, which is derived from the half-edge data structure with the non-manifold feature of IFMC taken into account, is adopted to represent the geometry and topology information of the component.For the material model of IFMC, this paper focuses on the FGM component representation firstly and present a simplex-subdivision based CAD data exchange format, in which the material information is represented as a (n-1) simplex and material .distributing feature is represented by the interpolation on the simplex-subdivision. Based on those, a part-building orientation optimization algorithm and an adaptive slicing algorithm for FGM component are presented in the paper.For the IFMC material model, the IFMC material information representation is divided into a meso-scale and a macro-scale representation. In the meso-scale, a concept named parameterized periodic functional meso-structure is presented as a unique form to represent the FGM (the homogeneous materials are regarded as a special FGM), the composite and the functional meso-structure material. The model of PMS is a three-tuple that contains the space stateinformatation, the material parameter and the material meso-scale distribution feature. The macro-scale material information representation is similar to the FGM components by interpolation of the control parameter of the periodical functional meso-structure based on the simplex-subdivision.Through an example of manufacturing-oriented IFMC CAD data processing, it is proved that the IFMC CAD model and the material information representation and process method proposed in this paper can provide a reliable data support for IFMC digital concurrent design and manufacturing.
本文将理想材料零件CAD模型建立在以几何空间为底空间、以材料空间为丛空间的结构上,使用非流形几何模型作为理想材料零件几何拓扑模型的基础,并在半边数据结构基础上,针对理想材料零件的非流形特征局限内部边界上的特点,给出了一个半面数据结构来表述零件的几何拓扑信息;对于理想材料零件的材料模型,本文先从功能梯度材料零件的信息表述与CAD数据交换和处理入手,将材料信息表述为(n-1)维单纯形,然后通过对三维几何区域的单纯剖分,以插值的方式表述零件材料分布特征;在此基础上,根据功能梯度材料零件分层制造中对CAD数据处理的要求,给出了综合考虑零件几何特征与材料特征的生长方向优化算法和自适应切片算法;而对于文中所定义的理想材料零件,本文将其材料信息表述分解到细观和宏观两个尺度进行,首先给出了细观尺度上参数化的周期性功能细结构概念,以此来统一表述功能梯度材料(单质材料作为特殊的功能梯度材料看待)、复合材料和功能细结构材料;把周期性功能细结构模型化为一个包含空间状态信息、材料构成参数和材料细观分布特征参数的三元组,以表达零件的细观材料特征;对于零件宏观的材料变化特征,则同样在几何区域单纯剖分的基础上,通过对细观尺度上周期性功能细结构控制参数的插值来完成;通过理想材料零件CAD数据处理的算例,验证了本文中理想材料零件CAD模型及材料信息表述与处理方法完全可以为理想材料零件的数字化制造提供可靠的数据支持。
-
Results Spatial relations of the tumors to the lamina terminalis, anterior commissure and anterior communicating artery complex were clearly shown in T2R images. The optic nerves, optic chiasm and optic tracts were detected in 93.3%, 100% and 86.7% of the patients on T2R images and 66.7%, 93.3% and 66.7% on T1 weighted images, respectively. Detection rate of optic pathway on T2R images was higher than that on T1 weighted images.
结果 重T2加权灰阶反转成像可清晰显示肿瘤与终板、前连合及前交通动脉丛的空间关系;其视神经、视交叉和视束的检测率分别为93.3%、100%和86.7%,而在T1加权成像中则分别为66.7%、93.3%和66.7%,前者对视路的检测率显著性高于后者。
-
At last, we also give the classifying theorem of ideal semi-parallel immersiohs in an Euclidean space with flat normal bundles.
最后对于欧氏空间中法丛平坦的理想半平行浸入,我们也得到了完全的分类定理。
-
At last, we also give the classifying theorem of ideal semi-parallel immersions in an Euclidean space with flat normal bundles.
最后对于欧氏空间中法丛平坦的理想半平行浸入,我们也得到了完全的分类定理。
-
Restricting the homeomorphism on the fibres of fibre bundles π:G(2,8)→S6 and τ:CP3 →S4 respectively,we get the set of complex structures on the tangent spaces of S6 and S4 respectively.
进一步,将此同胚限制于纤维丛π:G(2,8)→S6的每一纤维,给出S6的切空间上保定向的复结构
-
Bernstein type theorem; Quaternion Euclidean space; minimal Lagrangian graphs; Twisted special Lagrangian submanifold; twisted normal bundle; Austere submanifolds; Real space form; Complex space form; Hamiltonian minimal submanifold; A Lagrangian submanifold with conformal Maslov form
基础科学,数学,几何、拓扑伯恩斯坦型定理;四元数欧氏空间;极小拉格朗日图;扭曲特殊拉格朗日子流形;扭曲法丛; Austere子流形;实空间形式;复空间形式;哈密尔顿极小子流形;具有共形Maslov形式的拉格朗日子流形
-
This study was carried out in collective-owned summer grassland in Ganchaitan, which is located at the south foot of eastern Lenglongling Mountain (a branch of north Qilian Mountain), with yak and Tibetan sheep miscellaneously grazed on it. The grassland type could be classified as alpine meadow, dominated by Potentilla froticosa shrub. This study, under grads grazing stress, focused on the community structure, composition, species diversity, above-ground biomass of PFS, by using pane net sampling based on spatial distribution in stead of temporal succession. Results showed that: Grazing stress negatively related to the distance between grazing area and resident area.
以祁连山北支冷龙岭东段南麓的甘柴滩夏季牧场集体长期混合放牧的高寒金露梅Potentilla froticosa灌丛草场为对象,利用空间分布代替时间演替的方法,采用方格网法取样分析调查,对不同放牧压力梯度下金露梅灌丛群落的结构、组成、物种多样性、地上生物量进行研究,结果表明:①放牧居住点由远到近,放牧压力梯度不断增加,金露梅株高、密度、覆盖度、地上生物量和丛间草地的地上生物量均有不同程度的降低,地上的总生物量降低幅度达84.77%。
-
In the third chapter,We study some geometric properties and spectral propertiesof the Jacobi operator on a solvable extension G of Heisenberg groups H.In the firstsection,we give the definition of G and some fundamental geometric properties on G.Inthe second section,we discuss the Integrability of certain subbundles and the geometricstructure of the induced foliations in case of integrability.In the third section,we studythe spectral properties of the Jacobi operator of G.
可解李群与类对称空间亦密切相关,Damcek-Ricci空间即是广义Heisenberg的一可解扩张李群,在第三章中,我们构造且研究了Heisenberg群的一可解扩张李群G的几何性质,第一节讨论了G的曲率,李指数映射,整体坐标等基本几何性质;第二章研究了TG的某些子丛的可积性及可积时诱导叶片的几何结构;第三节给出了G的Jacobi算子的特征值和相应的特征子空间。
- 更多网络解释与丛空间相关的网络解释 [注:此内容来源于网络,仅供参考]
-
bundle space:丛空间
bundle of spheres 球把 | bundle space 丛空间 | bundle structure theorem 丛结构定理
-
bundle space:丛空间;束空间
1232,"bundle of spheres","球束" | 1233,"bundle space","丛空间;束空间" | 1234,"busy channel","热线"
-
bundle structure theorem:丛结构定理
bundle space 丛空间 | bundle structure theorem 丛结构定理 | bus 母线
-
Culture Complex:文化丛
强调文化圈的地理概念,他认为文化圈是一个地理空间,其中包括一个文化丛(Culture Complex)文化丛中还包含有若干文化成分的许多部分,都分别扩散在这个地区空间中,但是并不一定包括全部文化要素在内.
-
projective line bundle:射影线丛
projective limit space 射影极限空间 | projective line bundle 射影线丛 | projective line element 射影线元素
-
oriented sphere bundle:有向球丛
oriented space 有向空间 | oriented sphere bundle 有向球丛 | oriented surface 有向曲面
-
projective space:射影空间
在所有紧致复流形(compact complex manifold)中,复射影空间(projective space)恐怕算是最简单的了. 即便是在这样简单的空间上,也有一些很有意思但很难的问题. 今天我们来聊聊射影空间上的秩(rank)为2的全纯向量丛. 先从最简单的情形看起.
-
tangent vector bundle:切向量丛
tangent vector 切矢量,切向量 | tangent vector bundle 切向量丛 | tangent vector space 切向量空间
-
universal bundle:万有丛
完全最大值原理|complete maximum principle | 万有丛|universal bundle | 万有覆叠空间|universal covering space
-
vector bundle:向量丛
进一步的,当流行本身的拓扑结构和切空间上的线性结构发生关系--也就获得一簇拓扑关联的线性空间--向量丛(Vector bundle). 流形在实际应用中起重要作用的还有两个方面:一个是研究几何形体的性质(我们暂且不谈这个),