英语人>词典>汉英 : 丛映射 的英文翻译,例句
丛映射 的英文翻译、例句

丛映射

词组短语
bundle map
更多网络例句与丛映射相关的网络例句 [注:此内容来源于网络,仅供参考]

More precisely, we obtain an important relation between the mapping Ψ, which plays an important role in defining obstruction set, and the mapping on the cotangent bundle induced by the original diffeomorphism. We show that the only difference between them is a nonlinear factor.

在§3.2中我们得到了在定义阻碍集这一概念中起着关键作用的Ψ映射与原来映射在其余切丛上所诱导映射之间仅仅只相差一个非线性因子这一重要关系。

Firstly, based on the generalized function,φ-mapping topological current are rigorously proved to be of delta-function form δ and can be labelled by the nodal indices of the vector field, namely by Hopf indices and Brouwer degrees of this vector field, which reveals the inner relationships between our theory and the topology of vector bundle.

论文首先以广函数为基础严格证明了,φ-映射拓扑流具有δ函数形式,并且可以向量场的零点指标表征,即以其Hopf数和Brouwer度拓扑量子化,从而揭示了它与向量丛的拓扑学之间的内在联系。

Firstly,based on the generalized function,φ-mapping topological currentare rigorously proved to be of delta-function formδand can be labelledby the nodal indices of the vector field,namely by Hopf indices and Brouwerdegrees of this vector field,which reveals the inner relationships between ourtheory and the topology of vector bundle.A singular divergence theorem isalso presented.

论文首先以广函数为基础严格证明了,φ-映射拓扑流具有δ函数形式,并且可以向量场的零点指标表征,即以其Hopf数和Brouwer度拓扑量子化,从而揭示了它与向量丛的拓扑学之间的内在联系。

In the third chapter,We study some geometric properties and spectral propertiesof the Jacobi operator on a solvable extension G of Heisenberg groups H.In the firstsection,we give the definition of G and some fundamental geometric properties on G.Inthe second section,we discuss the Integrability of certain subbundles and the geometricstructure of the induced foliations in case of integrability.In the third section,we studythe spectral properties of the Jacobi operator of G.

可解李群与类对称空间亦密切相关,Damcek-Ricci空间即是广义Heisenberg的一可解扩张李群,在第三章中,我们构造且研究了Heisenberg群的一可解扩张李群G的几何性质,第一节讨论了G的曲率,李指数映射,整体坐标等基本几何性质;第二章研究了TG的某些子丛的可积性及可积时诱导叶片的几何结构;第三节给出了G的Jacobi算子的特征值和相应的特征子空间。

更多网络解释与丛映射相关的网络解释 [注:此内容来源于网络,仅供参考]

bundle map:丛映射

bundle 束 | bundle map 丛映射 | bundle of coefficients 系数丛

splitting map of a bundle:丛的分裂映射

从属性|subordination | 丛的分裂映射|splitting map of a bundle | 丛的截面|cross section of a bundle

bundle of coefficients:系数丛

bundle map 丛映射 | bundle of coefficients 系数丛 | bundle of lines 线把

fiber map:纤维映射

fiber bundle 纤维丛 | fiber map 纤维映射 | fiber preserving mapping 保纤映射

coarse moduli space:粗糙模空间

丛映射|bundle map | 粗糙模空间|coarse moduli space | 簇的函数域|function field of a variety

submersion:淹没

微分流形:一、 流形的基本概念:流形的定义和基本例子,子流形,切空间和切丛,光滑函数、光滑映射及切映射. 要求了解球面、环面、射影空间等基本例子,并了解一维、二维流形的分类. 要求了解浸入(immersion)、嵌入(embedding)、淹没(submersion)和微分同胚的概念.