- 更多网络例句与不变子群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Although many results have been obtained, there are still a number of very interesting questions about composition operators unsolved. There is much more to be learned about the collective compactness and convergence of composition operator sequences, compactness of various product of composition operators, cyclicity, closed range and spectra of composition operators in various settings. Commutants of composition operators seem to be very difficult to characterize. Only a little is known about their reducing invariant subspaces. There has been no work on C〓 algebras generated by composition operators.
尽管已取得如此丰富的结果,但是关于复合算子仍然有大量非常有意义的问题值得研究,例如:复合算子序列的总体紧性及收敛性、复合算子的各种乘积的紧性、复合算子的闭值域问题、复合算子在各种解析函数空间上的谱的描述、换位复合算子的刻画、复合算子诱导的不变子空间问题、循环复合算子的研究、由复合算子生成的C〓-代数的研究、不同解析函数空间之间的加权复合算子及复合算子半群等等问题。
-
Li 101 proved the nonlinear ergodic theorem for semitopological semigroups of Lipschitzian mappings in the uniformly convex Banach space with the Frechet differentiable norm without using the concept of invariant mean and submean. In Chapter 1, we extend the results in [23 [24] to the case of almost-orbit.
Li[10]避开了不变平均及不变子平均的概念,在具Frechet可微范数的一致凸Banach空间中,给出了一般拓扑半群上渐近非扩张半群的遍历压缩定理。
-
Moreover, when X is a Hilbert space, Miaxoguchi and Takahashi provided the ergodic retraction theorem for general semigroups of asymptotically nonexpansive mapping by using the concept of invariant submean.
进一步,当X是Hilbert空间时,Miaxoguchi及Takahashi引入了不变子平均的概念,在一般拓扑半群上给出了渐近非扩张半群的遍历压缩定理。
-
In this chapter, firstly, the definition of rough semigroups is given afresh. Then based on rough groups, rough subgroups, rough cosets, rough invariant subgroups, some properties of rough subgroups and rough invariant subgroups and the concept of rough quotient groups are introduced. Finally, based on some concepts of homomorphism and isomorphism of rough groups, basic homomorphism theorem and isomorphism theorem of rough groups are put forward and proved.
在这一章中,首先重新给出了粗糙半群的定义,其次在粗糙群、粗糙子群、粗糙陪集、粗糙不变子群的基础上,给出了粗糙子群的若干性质、粗糙不变子群的三个重要性质和粗糙商群的定义,最后在粗糙群同态与同构的基础上,给出了粗糙群同态基本定理与同构定理。
-
In this part, we will study some basic and important concepts such as semi-group, group, isomorphism, homomorphism, subgroup, invariant subgroup, factor group, and transformation group.
本部分考虑的主要概念有半群、群、同构、同态、子群、不变子群、商群以及变换群等。
-
At the same time, some articles that have been studied about the theory combined pure mathematics with rough sets have been emerged, and some new mathematical notions, such as rough logic, rough ideal in semigroups, rough groups and rough subgroups, rough cosets, rough invariant subgroups and homomorphism and isomorphism of rough groups, are introduced.
同时,纯粹的数学理论与粗糙集理论结合起来进行研究已有文章出现,并不断有新的数学概念出现,如&粗糙逻辑&、&半群中的粗理想&、&粗糙陪集&、&粗糙不变子群&、&粗糙群和粗糙子群&、&粗糙群的同态与同构&。
-
To ensure the normal handling of religious affairs by religious personages, the government grants stipends to those who are in financial difficulties
为保证宗教人士正常地履行教务,政府对一些生活困难的宗教人士,发放一定的生活补助费。正规子群,不变子群
- 更多网络解释与不变子群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
invariant subalgebra:不变子代数
不变集 invariant set | 不变子代数 invariant subalgebra | 不变子群 invariant subgroup
-
invariant subgroup:不变子群
不变子代数 invariant subalgebra | 不变子群 invariant subgroup | 不变子集 invariant subset
-
invariant subgroup:不变子群,正规子群
invariant strangeness 不变奇异性 | invariant subgroup 不变子群,正规子群 | invariant subspace 不变子空间
-
invariant subgroup:不变子群,正规子群=>不変部分群
invariant structure 不変構造 | invariant subgroup 不变子群,正规子群=>不変部分群 | invariant subspace 不变子空间=>不変部分空間
-
fully invariant subgroup:全不变子群
全不变子群列 fully invariant series of subgroups | 全不变子群 fully invariant subgroup | 完全单调 fully monotone
-
irreducible invariant subgroup:不可约不变子群
irreducible integral 不可约积分 | irreducible invariant subgroup 不可约不变子群 | irreducible Markov chain 不可约马尔可夫链
-
topological invariant subgroup:扑拓不变子群
topological invariance 拓扑不变性 | topological invariant subgroup 扑拓不变子群 | topological irreducibility 拓扑不可约性
-
invariant subset:不变子集
不变子群 invariant subgroup | 不变子集 invariant subset | 不变子空间 invariant subspace
-
invariant subspace:不变子空间=>不変部分空間
invariant subgroup 不变子群,正规子群=>不変部分群 | invariant subspace 不变子空间=>不変部分空間 | invariant surface 不变曲面
-
self-conjugate subgroup:正规子群;不变子群;自共轭子群
自共轭二次曲面 self-conjugate quadric | 正规子群;不变子群;自共轭子群 self-conjugate subgroup | 自配极四面形;自共轭四面形 self-conjugate tetrahedron