英语人>词典>汉英 : 上生成元 的英文翻译,例句
上生成元 的英文翻译、例句

上生成元

基本解释 (translations)
cogenerator

更多网络例句与上生成元相关的网络例句 [注:此内容来源于网络,仅供参考]

Let G be a finite abelian group with two elements generating set M .

G是一个有两个生成元的集合M上的一个有限阿贝尔群。

Since it is easy to determine the generators of the maximal subalgebra N, we only need to figure out the image of the automorphism φ which applies on these generators.

事实上,极大幂零子代数N的生成元是很容易计算出来的,所以我们只需要计算出自同构φ作用在这些生成元上的像就可以了。

Chapter 1 gives the background,current research process of relatedproblems and summarizes this thesis\'s work.In chapter 2,we study the Brownian motion with holding and jumping on the boundary.We use the resolvent method to obtain the infinitesimal generator because the domain of the infinitesimal generator is essentially the same as the range of the resolvent.Knowledge of this range and of the differential operator determines uniquely the infinitesimal generator.Since the semigroup generated by the DHJ is not strongly continuous,to use the nice property of strongly continuous semigroup in analytic theory,in chapter 3 we show that the dual is strongly continuous and derive ergodicity through spectral radius formulas and finally obtain the ergodic theorem by duality. In chapter 4,we discuss a class of a more general process---one dimensional Feller diffusion proposed by W.Feller in 1954.The Feller diffusion allows the possibility of jumps from boundary to boundary,not only from boundary to the interior.We give the stationary distribution of this process.

具体地,本文的结构如下:第一章给出了问题产生的背景,研究现状及本文的主要工作;第二章研究了在边界上逗留后随机跳的布朗运动,我(来源:3dABC论文网www.abclunwen.com)们用预解算子的方法得到其无穷小生成元,因为无穷小生成元的定义域本质上就是预解算子的值域,知道这个值域和微分算子形式就能唯一地决定无穷小生成元;由于DHJ过程产生的半群不是强连续的,为利用强连续半群的一些漂亮性质,在第三章中我们证明其对偶半群是强连续的,然后由谱半径公式得到遍历性并且最后由对偶得到遍历定理;第四章讨论了Feller在1954年引入的更广的一类过程----一维Feller扩散过程,Feller扩散过程允许有从边界到边界的跳发生,即不仅仅局限于从边界到内部的跳,在这一章中,我们给出了一维Feller扩散过程的平稳分布;在第五章,我们讨论了一些相关的问题,给出了DHJ过程对应的PDE问题及特征值与收敛速度的关系。

It is easy to see that the bialgebra H we find,canbe regarded as the enveloping algebra of a Lie algebra,whose generators are thoseof the Lie algebra of type A and n-1 other elements which commute with genera-tors above.

可以看出,我们找到的H作为代数,恰为在An-1型李代数上增加与之可换的n-1个生成元后得到的包络代数,其自然表示的矩阵元恰好生成代数AR。

Firstly, it's proved that the base of free monoid is unique, and that the equation of a base, a generating set and a irreducible generating set in the semigroup with length; Secondly, it's given the relation of a primitive word and a word of indecomposable--Let and is indecomposable, then is primitive ;And by using the length's method and chart,some properties of primitive word have been proved and the solutions of the equation , are discussed; Lastly, on the base of some proposition in Free monoids and Languages ,the proofs of some properties are improved by instruction. For example: Let be a primitive word over X, where .Then is a code. And let then if and only if {} is a code.

首先,讨论了含幺半群中基的基本性质及基与最小生成元集的联系,并给出了含幺半群中基、生成元集、不可约生成元集三者之间的关系;证明了在有唯一长度的半群S中,不可约生成元集、基、最小生成元集三者之间的等价关系;其次,讨论了字的组合与分解性,得出了字的本原性与不可分解性之间的关系---若为不可分解的,则一定是本原的,反之,不一定真;并运用图示法证明了字的可补性理论,讨论了方程,的可解性;在此基础上,用归纳法进一步证明了本原字与码的有关命题--若是X上的一个本原字,其中,则是一个码;若则当且仅当{}是一个码。

The main results are as follows: the relations between local fractional integrated semigroups and the corresponding Cauchy problem, global fractional integrated semigroups and regularized semigroups are given; introduction of the notion of regularized resolvent families, and the generation theorem and analyticity criterions for regularized resolvent families are obtained; the spectral inclusions between fractional resolvent family and its generator, and the approximation for fractional resolvent families in the cases of generators approximation and fractional orders approximation; elliptic operators with variable coefficients generating fractional resolvent family on L^2 by using numerical range techniques; and the L^p theory for elliptic operators with real coefficients highest order are obtained by Sobolev''s inequalities and the a priori estimates for elliptic operators; and a kind of coercive differential operators generates fractional regularized resolvent family by applying the Fourier multiplier method, functional calculus and some basic properties of Mittag-Leffler functions.

主要结论是:给出了局部分数次积分半群和相应的Cauchy问题的关系以及分数次积分半群和正则半群的关系;引入了正则预解族的概念,并给出了其生成定理和解析生成法则;给出了分数次预解族与其生成元的谱包含关系,并研究了在生成元逼近和分数阶逼近两种情况下相应的预解族的逼近问题;利用数值域方法证明了具变系数的椭圆算子在L^2上生成分数次预解族;利用Sobolev不等式和椭圆算子的先验估计证明了具变系数的椭圆算子在其最高项系数为实数时在L^p上生成分数次预解族;运用Fourier乘子理论、泛函演算和Mittag-Leffler函数证明了一类强制微分算子可以生成分数次正则预解族,并给出了该预解族的范数估计。

The result is generalized to a sequence of Banach spaces.

由此得出:Banach空间X上n次积分C-半群序列S强收敛于Banach空间X上n次积分C-半群S的充分条件是其生成元序列A强收敛于A,并将这一结论推广到一般的Banach空间序列上。

In this paper,we determine J_~(2~k+2v)by constructing ingeniously indecomposable manifolds M,which can be generators in MO_*,and defining appropriate(Z_2)~k-action on M.

在本文中,我们通过巧妙地构造流形M,使其所在的上协边类不可分解,从而可以作为上协边环MO_*的生成元,并在M上定义适当的(Z_2)~k作用使其不动点集F具有常余维数r,决定了未定向上协边环MO_*的理想J_~(2~k+2v)。

According to [2], we know that if X is a reflexive Banach space and T is a strongly continuous semigroup on X with the infinitesimal generator A, then the adjoint semigroup T~* is also a strongly continuous semigroup on X* and its infinitesimal generator is A~*, the ajoint operator of A.

由文献[2]我们知道,如果X是一自反Banach空间,那么X上强连续半群T的对偶半群T~*也是X~*上的强连续半群,并且其无穷小生成元为半群T的无穷小生成元的对偶。

Pastijn left the question open whether is a congruence on the free idempotent semiring generated by two free generators. In this paper, the open question will be solved.

从而,提出了一个公开问题:是否为由两个自由生成元生成的幂等元半环上的同余,本文给出了这个问题的一个肯定的回答。

更多网络解释与上生成元相关的网络解释 [注:此内容来源于网络,仅供参考]

cogenerator:上生成元

cofunction 余函数 | cogenerator 上生成元 | cogredient automorphism 内自同构

cogredient automorphism:内自同构

cogenerator 上生成元 | cogredient automorphism 内自同构 | coherence 凝聚

fractal theory:分形理论

研究分形性质及其应用的科学称为"分形理论(Fractal theory)". 按分形理论,分形体系内任何一个相对独立的部分,在一定程度上都是整体的再现和缩影. 构成分形整体的相对独立的部分称为生成元或分形元. 分形元的不断重复最终形成复杂奇异的分形体系.