- 更多网络例句与上同调代数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Methods of algebraic geometry rely heavily on sheaf theory and other parts of homological algebra .
代数几何方法在很大程度上依赖束理论和其他地区的同调代数。
-
Let L and P be Lie color algebras and let M be a graded module over P, the crossed modules which make M as their kernal and P as their cokernal are considered. It is shown that under a suitable equivalent relation, there is a bijection between the set of the equivalent classes CML and the homogeneous components of degree zero of H~3.
从交叉模的定义出发,对于给定的Lie color代数L,P以及阶化P模M,考虑所有以M为核、以P为余核的L的交叉模,在这些交叉模之间定义了一个等价关系,由此得到交叉模的等价类集CML,证明了CML与三维上同调群H~3的零次齐次部分之间存在一一对应,从而可以利用三维上同调群对Lie color代数的交叉模进行分类。
-
It proves that the first cohomology group of Block Lie algebraL with coefficients inL-module V is trivial.
证明了系数在模V上的Block型李代数的一阶上同调群是平凡的。
-
But the theory of cohomology for superalgebra needs more work.
但是超代数的上同调理论还需要进一步的研究。
-
The main purpose of this thesis is to study the application of the representation theory in Hochschild homology and cohomology groups of algebras, Hopf algebras and quantum groups, which are very active branches at present.
本学位论文主要研究代数表示论在代数的Hochschild同调群和上同调群,Hopf代数和量子群这几个当今很活跃的数学分支中的应用。
-
In the representation theory of finite-dimensional algebras, combinatorial tools as quivers and their representations provide effective method in computing Hochschild homology and cohomology groups of finite-dimensional algebras.
代数表示论中的组合工具—箭图及其表示的发展和应用,为计算有限维代数的Hochschild同调群与上同调群提供了有效的方法。
-
In particular, we compute Hochschild homology and cohomology groups of infinitedimensional path algebras and some of their quotient algebras, and we prove that for a general monomial algebra (not necessary finite-dimensional), all Hochschild cohomology groups of positive degrees vanish if and only if its Gabriel quiver is a finite tree.
特别地,我们计算了无限维路代数以及某些商代数的Hochschild同调群和上同调群,而且给出了一般单项代数的各正次Hochschild上同调群为零的充分必要条件,即它的Gabriel箭图是有限树。
-
In chapter 2, we study a kind of operator algebra acted on the Hilbert space H which is called the closed weakly reducible maximal triangular algebra, denoted by S.
第二章我们研究了一个作用在Hilbert空间Η上的闭弱可约极大三角代数S,证明了S的系数在Β中的任意阶完全有界Hochschild上同调群H_~nS,Β(Η(n≥1)是平凡的。
-
Notable examples are the development of category theory, which provides a useful framework for a large part of mathematics, homological algebra, and applications of model theory to algebra.
比较明显的例子是范畴论的发展,范畴论对数学,同调代数,以及模论在代数上的应用都提供了一个十分有用的框架。
-
In recent years, the theory of infinite dimensional simple Lie algebra has become an important branch in Lie theory.
近年来无限维单李代数的结构理论以及表示理论已经成为李代数研究中的重要分支,无限维单李代数的构造,自同构群的确定,同构分类,二上同调群的计。。。
- 更多网络解释与上同调代数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
CATEGORY:范畴
最近这些年来一种称为"范畴"(Category)的东西在计算机理论研究中频频出现. 范畴论是从同调代数发展而来的一种较新的代数语言,但它显然也不是可以解决任何问题的灵丹妙药. 多一种表达方式当然在某种程度上可以增进我们的理解.
-
cohomological dimension:上同调维数
cohobation | 回流蒸馏 | cohomological dimension | 上同调维数 | cohomology algebra | 上同调代数
-
cohomology algebra:上同调代数
cohomological dimension | 上同调维数 | cohomology algebra | 上同调代数 | cohomology class | 上同调类
-
galois cohomology:伽罗瓦上同调
galois algebra 伽罗瓦代数 | galois cohomology 伽罗瓦上同调 | galois extension 伽罗瓦扩张
-
galois algebra:伽罗瓦代数
galerkin method 加勒金法 | galois algebra 伽罗瓦代数 | galois cohomology 伽罗瓦上同调
-
singular element of a Lie algebra:李代数的奇异元
李代数的理想|ideal of a Lie algebra | 李代数的奇异元|singular element of a Lie algebra | 李代数的上同调|cohomology of Lie algebras
-
transgression:超渡
嘉当同他的学生定出李群及齐性空间的上同调环.他定出齐性空间G/g的实系数上同调,其中G是紧连通李群,g是G的连通闭子群.所用的方法是李代数的韦伊代数.这只需计算G的李代数的"超渡"(transgression)及同态I(G)→I(g),