- 更多网络例句与三级数定理相关的网络例句 [注:此内容来源于网络,仅供参考]
-
For some special cases, the paper gives some important identical theorems, and then establishes a valuable relation between the uniformly almost periodic functions and the trigonometric polynomials.Secondly, on the basis of the identical theorem, the paper investigates the Fourier series of the uniformly B2 almost periodic functions, and further proves that the series is unique.Thirdly, the paper discusses the Parseval equation of the uniformly B2 almost periodic functions, which establishes the relation between these functions and the coefficients of their Fourier series; and next investigates an important approximation theorem-Riesc-Fischer theorem, about the uniformly B2 almost periodic functions and the trigonometric polynomials.
并给出了特殊情况下的几个重要的恒同定理,将一致概周期函数与有限三角多项式联系起来;第二,在恒同定理的基础上,给出了一致B~2概周期函数的Fourier级数,并且级数是唯一的;第三,讨论了一致B~2概周期函数的Parseval方程,建立了函数与其Fourier级数的系数之间的联系;接着给出了关于一致B~2概周期函数和三角多项式之间的一个重要近似定理—Riesc-Fischer定理。
-
Invariant theorem of the operator series multiplier convergent. Using operator series multiplier convergent,AK-space of concept ,we obtained the theorem of operator series multiplier convergent invariant and the old theorem of general series multiplier convergent invariant is looked as special case.
第三章 算子级数乘数收敛的不变性:利用算子级数乘数收敛、AK—空间的定义,得到了算子级数乘数收敛的不变性定理,从而将以往的普通级数乘数收敛的不变性定理作为特殊情况。
-
A combinatorial identity is obtained:=:~z 2r扟32-rn-iJ As main result of this paper, in section two, the convolution梩ype identities emerge from our discussion about Lagrange formula whom in author 憇 view can be taken as the inherent characteristic of Lagrange formula but have been ignored fOi so long time.
第一章对拉格朗日反演在Riordan群理论中的应用进行了介绍,证明了一个组合等式:第二章通过对拉格朗日反演定理本身的分析,得到一个对任意的形式幂级数都适用的三个拟卷积公式,这些公式体现了任意能在零点解析的函数的内在性质。
-
Throush the interlace series type linear differential equation,coefficient containing three negative number of times,power function and arrangement number can be changed into the linear differential equation of successive integral.
通过把系数含有负三次幂函数与排列数的交错级数型线性微分方程化为可逐次积分的线性微分方程,找出了求这类方程通解的方法与理论,把所得定理给出了严格的证明,并将其推广,同时通过实例介绍了它的应用。
-
By the Utev S.and Peligrad M.inequality of-mixing random variable sequence,we obtain the Hájeck-Rènyi inequality and three series theorem and Chung′s strong law of large numbers for-mixing random variable sequence,which extend and improve the corresponding results of Gan shixin and Wu Qunying,these resuls are consistent with that for independent random variable sequence.
不等式,得到了-混合随机变量序列的Hájeck-Rènyi不等式、三级数定理和Chung型强大数律,改进了甘师信与吴群英等人的结论,达到了与独立时一致的结果。
-
Chapter 6 is contributed to studying the convergence properties of pariwise NQD random sequences. We extend the Kolomogrov-type inequality, Baum and Katz complete convergence, the three series theorem, Marcinkiewicz strong law of large number and Jamison theorem.
第六章研究两两NQD列的收敛性质,首先给出两两NQD列的Kolmogorov型不等式,进而讨论它的若干收敛性质,获得了与独立情形一样的Baum和Katz完全收敛定理;几乎达到独立情形著名的Marcinkiewicz强大数定律,三级数定理,推广了著名的Jamison定理。
- 更多网络解释与三级数定理相关的网络解释 [注:此内容来源于网络,仅供参考]
-
three point problem:三点问题
three place 三位的 | three point problem 三点问题 | three series theorem 三级数定理
-
three series theorem:三级数定理
three place 三位的 | three point problem 三点问题 | three series theorem 三级数定理
-
three sheeted:三叶的
三级数定理 three series theorem | 三叶的 three sheeted | 三面的 three sided
-
tridiagonal matrix:三对角[矩]阵
三等分角线|trisectrix | 三对角[矩]阵|tridiagonal matrix | 三级数定理|three series theorem