- 更多网络例句与一阶偏微分方程相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this thesis, we express one dimension wave equation by arithmetic theory and prove D'Alembert Solution in the light of method on one stage linear partial differential equations.
本文从另一角度即算子的方法,将弦振动方程写成算子的形式,再根据一阶线性偏微分方程的求解方法,最终推导出D'Alembert公式。
-
The governing equations of laminate-faced sandwich cylindrical shallow shells based on the first-order shear theory with large deflection are high-order partial differential equations. Four dependent functions are involved.
大挠度剪切理论下复合材料夹层圆柱扁壳的稳定性控制方程是一组非线性高阶常系数偏微分方程,其中包含四个独立的函数,它们分别为横向挠度w、参考曲面的法线转角Φx、Φy和应力函数F。
-
With examples using VB expression of an order partial differential equations of the numerical method, we wish to offer you some help.
结合实例用VB编程表达了一阶偏微分方程的数值解法,希望能为您提供一点帮助。
-
Within this context, four specific areas are addressed:(1) By means of finite integration technique, a new kind of the first order partial difference equation is derived from the original disperse transmission line equation of the uniform waveguide's. As it is the kind of one dimension Dirichlet's boundary problem, it is convenient for us to solve this equation from the leapfrog scheme. Because computation is carried out in one dimension, both high calculation efficiency and precision have been obtained in this method. Meanwhile, this method provide us a different selection to simulate the transient response of waveguide with non-simplical, for examples cylinder and elliptic waveguide, and avoid solving the second order equation, or using finite difference time domain to simulate a three dimension problem, sometimes the latter precision is not satisfied with the need, or low efficiency.
在这一研究内容下,主要研究四个方面的问题:(1)在完成金属波导传输线方程时域形式的基础之上,应用有限积分技术,把波导特征模式的色散传输线方程,化简为一组新的一阶偏微分方程组,该边值问题属一维Dirichlet边值问题,从而便于用蛙跳格式求解,由于是在一维中计算,该方法具有很高计算效率和精度,从而避免了以往为得到金属波导中特征模的时域响应特性,须要求解二阶方程,或用时域有限差分方法求解三维问题的方法,对于后者来说,计算有时是不准确的,或是很耗时的例如计算诸如圆波导、椭圆波导等其它复杂形状的波导。
-
Moreover, students should know some basic theories of initial value problem of differential equation, stability theory and first order linear or quasi-linear differential equations.
稳定性理论或一阶线性偏微分方程有所认识。
-
Based on modern optimization theory and optimal control theory, this dissertation studies some questions as follows:1. The optimization model of parameter identification of three-dimensional geologic history numerical simulation, algorithm and its applicationGeologic history numerical simulation is a basic content of basin numerical simulation, and the porosity is the major parameter in the evolution and development process of oil-bearing basin. According to the sedimentation and burial mechanism, the physical and chemical principles of oil geology, the mudstone porositys non-linear parabolic partial differential equation has been established.
本文应用现代最优化及最优控制理论,对如下一些问题进行了研究: 1、三维地史数值模拟的参数辨识优化模型、算法及应用地史模拟是盆地数值模拟的一个基础性的研究内容,地层孔隙度是含油气盆地地史演化发育过程中的重要参数,根据地层沉积埋藏机理和石油地质的物理化学原理,通过引入数学物理方程概念,建立了泥岩三维孔隙度场方程,根据问题的特点,给出了方程的定解条件,对方程的动边界也给出了处理方法,并且证明了解的存在性与惟一性,在此基础上建立了以当今实测数据为拟合准则的三维地史数值模拟的参数辨识优化模型,这是一个含有二阶偏微分方程约束的泛函极值问题。
-
Furthermore, the paper puts forward a successful trial solution to solve the partial differential equation for that necessary conditions.
公式,提出了求解该一阶条件中的偏微分方程的成功率较高的试探求解法。
-
Therefore,it is necessary to research diffusion equation for suspended sediment because it describes the sediment move process in the water body.The equation is a various coefficients second-order linear partial differential equa-tion,such equation under complex boundary condition is very difficult to get its analytical solution,while its numerical solution relative analytical solution is more easier and has the obvious superiority:simple,the computation convenience.but to get a kind of difference format which is good accuracy and stability is not easy.
泥沙扩散方程实际上是一个变系数的二阶线性偏微分方程,这样的方程在各种复杂边界条件下求解是十分困难的,求它的解析解在数学上存在着难以克服的障碍,无法求出其精确解,因此常用数值方法求它的近似解,相比较而言,数值方法有着明显的优势:即简单灵活、计算方便快捷,但要寻找一种精度高、稳定性好、计算方便的差分格式也并非易事。
-
The method proposed by Lindzen and Kuo is used to solve a complex two-order parial differential equation.
利用Lindzen和Kuo所提出的方法来解这样一种复什二阶偏微分方程。
-
Three displacement functions w,Gand ψare introduced in this paper tosimplify motion equations of elasticity problenis in spherically isotropic media to an indepen-dent partial differential equation concerning one displacement function ψand simultaneous equations concerning two other displacement functions w and G.
本文引入三个位移函数,将球面各向同性弹性力学运动方程,简化为关于ψ的二阶偏微分方程,和关于W和G的联立方程。在静力学问题中,联立方程可进一步简化,w和G可用另一位移函数F表示,而F满足一个四阶偏微分方程。
- 更多网络解释与一阶偏微分方程相关的网络解释 [注:此内容来源于网络,仅供参考]
-
partial differential equation of elliptic type:椭圆型偏微分方程
partial differential equation 偏微分方程 | partial differential equation of elliptic type 椭圆型偏微分方程 | partial differential equation of first order 一阶偏微分方程
-
partial differential equation of hyperbolic type:双曲型偏微分方程
partial differential equation of first order 一阶偏微分方程 | partial differential equation of hyperbolic type 双曲型偏微分方程 | partial differential equation of mixed type 混合型偏微分方程
-
partial differential equation of first order:一阶偏微分方程
partial differential equation of elliptic type 椭圆型偏微分方程 | partial differential equation of first order 一阶偏微分方程 | partial differential equation of hyperbolic type 双曲型偏微分方程
-
power series:幂级数
介绍用於工程系统解析的相关数学工具,内容包含:(1)常微 分一阶,二阶及高阶方程式之解法 (2)拉普拉斯(Laplace)转 换及其应用 (3)幂级数(Power Series)(4)向量分析及应用 (5)矩阵代数 (6)傅立叶(Fourier)级数及转换(7)偏微分 方程.
-
Bianchi:比安基
在发展中国广义相对论在物理上取得了许多辉煌成就,但从一开始就存在着一个困难,这就是,表达引力场的方程是一个包含10个二阶非线性偏微分方程的方程组,而这10个方程之间又存在着4个独立的非线性偏微分方程组所组成的恒等式,也称为比安基(Bianchi)恒等式,这就使得只