- 更多网络例句与一致有界原理相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We also give the showing style of these principles in Banach space and give some applied examples of them.
第三章讨论了等度连续原理、一致有界原理以及Banach-Steinhaus型定理的最新研究结果,给出了这些原理在Banach空间上的表现形式,并举出一些应用例子。
-
The content of this course is divided into four chapter, the normed linear space and bounded linear operator on the normed space; the character of finite dimensional linear space; the basic theorems on Banach space.
本课程主要分为四章,赋范线性空间与内积空间;赋范线性空间上的有界线性算子,有限维赋范线性空间的特征。Banach空间中的基本定理:泛函存在定理,一致有原理,开映象,闭图象、逆算子定理。
-
Tan and Xu [1] had proved the theorem on convergence of Ishikawa iteration processes of asymptotically nonexpansive mapping on a compact convex subset of a uniform convex Banach space , Then Liu Qihou [3] presents the necessary and sufficient conditions for the Ishikawa iteration of asymptotically quasi-nonexpansive mapping with an error member on a Banach space convergent to a fixed point . Xu and Noor [5] had proved the theorem on convergence of three-step iterations of asymptotically nonexpansive mapping on nonempty closed, bounded and convex subset of uniformly convex Banach space.
Tan和Xu已经证明了建立在一致凸Banach空间紧凸子集上的渐进非扩张映射的Ishikawa迭代序列的收敛原理,随之,刘齐侯又阐述了Banach空间上渐进准非扩张映射T的具误差的Ishikawa迭代序列收敛于T的不动点的充分必要条件;之后,Xu和Noor也证明了定义在一致凸Banach空间某非空有界闭凸子集上的渐进非扩张映射的三步迭代序列的收敛原理。
-
In this paper we mainly discuss the late extending styles of basic principles such as equicontinuity principle ,uniform boundedness principle ,Banach-Steinhaus theorem and ect., and describe the new characters of these new results in Banach space.
本文主要讨论等度连续原理、一致有界原理及Banach-Steinhaus定理等基本原理的最新推广形式,刻划这些新结果在Banach空间上的新特征。
-
Consisting of 3 Chapters, the Paper mainly includes the following contents: Chapter 1 of Introduct on presents the significance of extending uniform boundedness principle and elso reviews one hundred years development of uniform boundedness principle iind the work done by people in this aspect; Chapter 2 mainly introduce some preparatory knowledge including definitions of dissecting operators, absorbing operators, equicontinuity and some relative examples; In Chapter 3, We discuss the new researching results of equicontinuity principle,uniform boundedness principle and Banach-Steinhaus type theorem .
本文共分三章,主要内容如下:在第一章绪论中说明了推广一致有界原理的意义;回顾了已知一致有界原理一百多年来的发展及人们在此方面所做的工作。在第二章中主要介绍了一些预备知识,其中包括:解剖算子、吸收算子、等度连续的定义并举了一些相关的例子。
-
The uniform boundedness principle of a family of fuzzy linear order-homomorphisms in L-fuzzy topological vector spaces is obtained.
得到了格值模糊拓扑线性空间中fuzzy线性序同态族的一致有界原理。
-
By applying maximum principle we can get the uniform boundedness of the corresponding viscosity solutions; Furthermore we exploit three groups of strong-weak entropy combinations to get the H l?
文中分线性源项和一般源项两种情形进行讨论,利用极值原理导出粘性解的一致有界性,通过强弱熵组合得到熵方程的Hl?
- 更多网络解释与一致有界原理相关的网络解释 [注:此内容来源于网络,仅供参考]
-
uniform approximation:一致逼近
uniform 匀的 | uniform approximation 一致逼近 | uniform boundedness principle 一致有界原理
-
uniform boundedness principle:一致有界原理
uniform approximation 一致逼近 | uniform boundedness principle 一致有界原理 | uniform continuity 一致连续性
-
uniform continuity:一致连续性
uniform boundedness principle 一致有界原理 | uniform continuity 一致连续性 | uniform convergence 一致收敛