- 更多网络例句与一维微分方程相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The finite difference is used to approximate differential operation; the reflectance map equation described by the first order nonlinear differential equation is transformed into an algebraic equation about the unknown surface heights, and then the objective equation is constructed by the reflectance map equation and gradient information of image. Moreover, the Newton iterative algorithm is utilized to obtain the numerical solution and 3D shape of the surface.
采用有限差分近似微分运算,将一阶非线性微分方程所描述的反射图方程转化为关于未知表面高度的代数方程,再由反射图方程和图像梯度信息构造目标方程,进而用Newton迭代算法求出该方程的数值解,得到表面三维形状。
-
Continuity equation and motion equation which can be applied to cone-shaped pipes are obtained and finite difference method for them is brought forward.
根据非稳定流的一维流动理论,对圆锥形管道中的瞬变流动进行了分析,推导出了适用于圆锥形管道的连续性微分方程和运动微分方程,给出了这两个方程的有限差分解法,同时对计算结果进行了相对误差的对比分析。
-
And then the influence of two of the damage models, the Kachanov and the gradient dependent constitutive equations, on the well posed properties of the fundamental equations in continuum damage mechanics is studied according to th.
首先从非局部理论出发,推导了应变梯度损伤本构方程;然后利用一阶拟线性偏微分方程组的特征理论,在一维弹性损伤情况下分析了两种不同的本构模型,即 Kachanov损伤本构方程与应变梯度损伤本构方程,对连续介质损伤力学基本方程适定性的影响。
-
The differential equation of the network is solved by solving a simple one dimensional differential equation.
通过求解简单的一维微分方程求出了网络的解的解析表达式。
-
Considering that the temperature gradient through thickness is much higher than that through width and length of plate, in this model, the governing equation of heat transfer was simplified as a one dimensional differential equation, and the series function solution for temperature is established in Lagrangian coordinate setting.
在该模型中,考虑到轧件厚度方向的温度梯度远大于沿宽度和长度方向的温度梯度,因而将热传导方程简化为一维微分方程,基于拉格朗日坐标建立了温度场的级数解法。
-
Within this context, four specific areas are addressed:(1) By means of finite integration technique, a new kind of the first order partial difference equation is derived from the original disperse transmission line equation of the uniform waveguide's. As it is the kind of one dimension Dirichlet's boundary problem, it is convenient for us to solve this equation from the leapfrog scheme. Because computation is carried out in one dimension, both high calculation efficiency and precision have been obtained in this method. Meanwhile, this method provide us a different selection to simulate the transient response of waveguide with non-simplical, for examples cylinder and elliptic waveguide, and avoid solving the second order equation, or using finite difference time domain to simulate a three dimension problem, sometimes the latter precision is not satisfied with the need, or low efficiency.
在这一研究内容下,主要研究四个方面的问题:(1)在完成金属波导传输线方程时域形式的基础之上,应用有限积分技术,把波导特征模式的色散传输线方程,化简为一组新的一阶偏微分方程组,该边值问题属一维Dirichlet边值问题,从而便于用蛙跳格式求解,由于是在一维中计算,该方法具有很高计算效率和精度,从而避免了以往为得到金属波导中特征模的时域响应特性,须要求解二阶方程,或用时域有限差分方法求解三维问题的方法,对于后者来说,计算有时是不准确的,或是很耗时的例如计算诸如圆波导、椭圆波导等其它复杂形状的波导。
-
The main contents include: Some preliminary theory (introduction to Sobolev spaces and variational formulations for differential equations); finite element methods for one-dimensional elliptic problems; the construction methods for general finite elements; error estimates for interpolation operators and inverse inequalities for finite element spaces; a priori and a posteriori error estimates for the finite element method for high-dimensional elliptic problems; some typical spectral methods for partial differential equations; error analysis for the spectral approximation for some linear and nonlinear partial differential equations.
主要内容有:准备知识(Sobolev空间的基本概念和主要结果,微分方程的变分描述);一维椭圆型方程有限元方法;一般有限元的构造;插值算子误差估计和逆不等式;高维椭圆型方程的先验、后验误差估计;求解偏微分方程的几类谱方法;线性与非线性问题谱逼近的误差分析等。
-
Based on modern optimization theory and optimal control theory, this dissertation studies some questions as follows:1. The optimization model of parameter identification of three-dimensional geologic history numerical simulation, algorithm and its applicationGeologic history numerical simulation is a basic content of basin numerical simulation, and the porosity is the major parameter in the evolution and development process of oil-bearing basin. According to the sedimentation and burial mechanism, the physical and chemical principles of oil geology, the mudstone porositys non-linear parabolic partial differential equation has been established.
本文应用现代最优化及最优控制理论,对如下一些问题进行了研究: 1、三维地史数值模拟的参数辨识优化模型、算法及应用地史模拟是盆地数值模拟的一个基础性的研究内容,地层孔隙度是含油气盆地地史演化发育过程中的重要参数,根据地层沉积埋藏机理和石油地质的物理化学原理,通过引入数学物理方程概念,建立了泥岩三维孔隙度场方程,根据问题的特点,给出了方程的定解条件,对方程的动边界也给出了处理方法,并且证明了解的存在性与惟一性,在此基础上建立了以当今实测数据为拟合准则的三维地史数值模拟的参数辨识优化模型,这是一个含有二阶偏微分方程约束的泛函极值问题。
-
Two basic theorems are given by researching Hamilton's two steps linear differential equations of bender equations which provide widespread application methods of normal differential operator correspond to ladder operators,then the solutions of general equations are obtained by taking advantage of the two above theorems: The energy eigenvalue equation of one-dimensional oscillator; the common state of ; the radial equation of a bondage state of hydrogen atom; the radial equation isotropic three-dimensional harmonic oscillator; the infinity deep potential well of ball
本文通过研究束缚态本征方程里的哈密顿算符的二阶线性常微分形式,给出两个基本定理并证明,提供构造二阶线性常微分算符相应的阶梯算符的普遍实用的方法,然后利用这两个定理构造量子力学中常见力学量的阶梯算符,并用以计算其能量本征值和对应本征函数:一维谐振子的能量本征方程;共同本征态;氢原子束缚态径向方程;三维各向同性谐振子的径向方程;无限深球势阱。
-
The one-dimension Terzaghi consolidation differential equation with boundary conditions,in which the top is drainable and the bottom is undrainable was solved,and the solutions obtained from several different references were analyzed.
解答了顶面不排水、底面排水边界条件下的太沙基一维固结微分方程,并比较分析了不同坐标系统下、不同边界条件下的单面排水太沙基一维固结微分方程的解答。
- 更多网络解释与一维微分方程相关的网络解释 [注:此内容来源于网络,仅供参考]
-
one dimensional differential equation:一维微分方程
one dimensional boundary value problem 一维边值问题 | one dimensional differential equation 一维微分方程 | one dimensional integral 单积分
-
one dimensional boundary value problem:一维边值问题
one dimensional 一维的 | one dimensional boundary value problem 一维边值问题 | one dimensional differential equation 一维微分方程
-
one dimensional integral:单积分
one dimensional differential equation 一维微分方程 | one dimensional integral 单积分 | one dimensional space 一维空间