zero ideal
- zero ideal的基本解释
-
-
零理想
- 更多网络例句与zero ideal相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The first chapter, main instead " duo-ring " condition of " every maximal left ideal is GW-ideal " condition,study strongly regularities of GP-V-ring on this condition.lt is shown that (1) R is strongly regular iff R is left GP-V-ring whose maximal left ideals are GW-ideal.(2)R is strongly regular iff R is left GP-V-ring whose maximal right ideals are GW-ideal. The second chapter, generalize some results of GP-V-ring to GP-V-ring, discuss regularity of GP-V-ring.It is shown that (1) R is left self-injective regular with non-zero socle iff R is left GP-V -ring with Soc = Soc and R contains an injective maximal left ideal.(2)R is regular ring and every maximal essential left ideal is ideal iff R is left GP-injective left GP-V -ring and every maximal essential left ideal is ideal.
第一章主要将"duo-环"条件替换成"每一极大左理想是GW-理想"条件,研究在此条件下,GP-V-环的强正则性,证明了:(1)R是强正则环当且仅当R是左GP-V-环且R的每一极大左理想是广义弱理想;(2)R是强正则环当且仅当R是左GP-V-环且R的每一极大右理想是广义弱理想,第二章,主要将GP-V-环上一些结果推广到GP-V′-环上,讨论GP-V′-环的正则性,证明了:(1)R是左自内射正则环且Soc≠0当且仅当R是包含内射极大左理想的GP-V′-环,且Soc=Soc;(2)R是正则环且每一极大本质左理想是理想当且仅当R是左GP-内射的左GP-V′-环且每一极大本质左理想是理想。
-
When I is a primary ideal or a zero-dimensional primary ideal ,the properties of I∶f and I∶〈f1,…, fr〉are studied; and the important conclusion was gotten when I is a P-prime ideal, I∶〈f1,…,fr〉= R or is also a P-prim.
并讨论了当I是准素理想、零维准素理想时,I∶f与I∶〈f1,…,fr〉的性质;得到了以下重要结论:当I是P-准素理想,则I∶〈f1,…,fr〉=R或是P-准素理想。
-
An ring R is said to be the middle superprime ring, if every non - zero ideal of R contains an non - zero element c, which is not middle divisor of zero.
一个环R称为中间超素环,如果它的每个非零理想都包含一个非零元素,它不是中间零因子。
- 更多网络解释与zero ideal相关的网络解释 [注:此内容来源于网络,仅供参考]
-
left divisor of zero:左零因子
左分配律 left distributive law | 左零因子 left divisor of zero | 左理想 left ideal
-
divisors of zero:零因子
无因子的理想子环 divisorless ideal | 零因子 divisors of zero | 十二边形 dodecagon