vector bundle
- vector bundle的基本解释
-
-
向量丛
- 更多网络例句与vector bundle相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Definition4:Given a n-dimensional vector bundle and m numbers ,then is called a linear combination of .
Definition3:设,为实数,称向量为数与向量的乘积,或与的数乘,记为或,即
-
Firstly, based on the generalized function,φ-mapping topological current are rigorously proved to be of delta-function form δ and can be labelled by the nodal indices of the vector field, namely by Hopf indices and Brouwer degrees of this vector field, which reveals the inner relationships between our theory and the topology of vector bundle.
论文首先以广函数为基础严格证明了,φ-映射拓扑流具有δ函数形式,并且可以向量场的零点指标表征,即以其Hopf数和Brouwer度拓扑量子化,从而揭示了它与向量丛的拓扑学之间的内在联系。
-
The stable vector bundle is constructed which is the mirror image of a special Lagrangian section with branched singularities of K3 surface or 2 dimentional complex torus.
用hyperKaehler rotation与反自对偶联络的技巧,给出了K-3曲面与复环面上2-重特殊拉格朗日截面所对应的稳定向量丛。
-
A vector bundle including zero vector must be linearly dependent.
所以,当m为偶数时,此线性方程组有非零解,向量组线性相关
-
The main ingredient in the set-theoretical part of Kobayashi-Hitchin correspondence is the followingTheorem 01. A stable holomorphic vector bundle E admits a Hermitian-Einstein metric.
其中重要的一步是如下的定理1.M是一紧复流形,设E是M上一稳定的向量丛,则E上存在有Hermitian-Einstein度量。
- 加载更多网络例句 (3)
- 更多网络解释与vector bundle相关的网络解释 [注:此内容来源于网络,仅供参考]
-
vector bundle:向量丛
进一步的,当流行本身的拓扑结构和切空间上的线性结构发生关系--也就获得一簇拓扑关联的线性空间--向量丛(Vector bundle). 流形在实际应用中起重要作用的还有两个方面:一个是研究几何形体的性质(我们暂且不谈这个),
-
vector bundle:向量束;矢扎
向量角 vector angle | 向量束;矢扎 vector bundle | 向量余同调 vector cohomology
-
vector bundle:向量丛 本文来自:博研联盟论坛
vector basis 向量基 本文来自:博研联盟论坛 | vector bundle 向量丛 本文来自:博研联盟论坛 | vector calculus 向量计算 本文来自:博研联盟论坛
-
vector bundle:向量束
向量玻色子 vector boson | 向量束 vector bundle | 向量微积分 vector calculus
-
complex vector bundle:复向量丛
complex variable 复变量 | complex vector bundle 复向量丛 | complex velocity potential 复速度位势
- 加载更多网络解释 (7)