英语人>词典>英汉 : variational equation的中文,翻译,解释,例句
variational equation的中文,翻译,解释,例句

variational equation

variational equation的基本解释
-

变分方程

相似词
更多 网络例句 与variational equation相关的网络例句 [注:此内容来源于网络,仅供参考]

In order to reasonably depict four basic problems with friction, one Coulomb friction new form in first Kirchhoff stress is proposed to deal with finite deformation problems, other Coulomb friction form in incremental mode to elastoplastic flow theory; Hilbert function spaces concerning elastoplastical problems with friction are established, so it makes all operations and calculations in the treatise standardized within the scope of reasonably topologic structure; In view of functional extremum, the equivalence between generalized variational inequalities principles in elastoplasticity with friction and corresponding basic problems are testified by inducing Lagrangian multipliers, so it provides a rationally theoretical basis for numerical methods in elastoplasticity with friction; From the viewpoint of variational inequality, the theory of generalized variational inequalities in elasticity and elastoplasticity with frictional constraint is studied, and the uniqueness and existence of the solution of FEM is proofed under the proposed conditions of stress compatibility, and them FEM approximation and a discrete solution are discussed; Based on the principles of generalized variational inequalities in elastoplasticity with friction, direct generalized variational inequalities methods is pretended, which is a natural generalization and development of direct variational methods; Using generalized variational inequalities methods, some examples in metal forming including plane deformation, upset and extrusion are analyzed and the results prove that all the theories and methods in the paper are right, feasible, accurate and advanced.

主要内容有:为了合理地描述金属塑性成形中摩擦约束弹性、弹塑性基本问题,提出和研究了有限变形下以Kirchhoff第一应力表示的Coulomb摩擦定律形式和弹塑性流动理论下以增量形式表示的Coulomb摩擦定律表示形式;系统建立了摩擦约束弹塑性问题的Hilbert函数空间,使本文规范在一个具有合理的代数拓扑结构内进行一切操作和运算;利用Lagrange乘子,从泛函极值的角度系统地阐述和论证了一系列摩擦约束弹性、弹塑性广义变分不等原理与相应的实际问题之间的等价性,它为处理摩擦约束的弹塑性力学数值方法提供了合理的理论基础;从变分不等式的角度出发,阐述了对应于摩擦约束弹性、弹塑性问题的广义变分不等式理论,首次提出了在应力相容性条件下,它的有限元解具有存在唯一性,进而讨论了其有限元近似及离散解法;基于摩擦约束弹塑性广义变分不等式原理,首次提出了直接广义变分不等式方法,这一方法是直接变分法的合理推广和发展;利用直接广义变分不等式方法对金属压力加工中的平面变形问题、镦粗、挤压等塑性成形问题进行了分析计算,验证了该理论和数值算法的正确性、实用性、精确性和优越性。

In this topic, the dynamic analysis methods for piezoelectric vibrator are studied systematically based on the theoretical model, FEM numerical experimentation and FEM governing equation for given compound-mode vibrator, and some valuable conclusions are obtained. The main work accomplished is summarized as follows: 1.Elaborate the main modeling methods for piezoelectric vibrator and the significance and necessity to study the dynamic characteristics of piezoelectric vibrator which emphasize the urgency of this paper. 2.Take the bending deformation induced by piezoelectric ceramic as example, the energy transfer mechanism of electric energy to mechanical energy are analyzed; the motion and force transfer mechanism are analyzed for the longitudinal-bending vibrator. 3.Based on mode assumption and Hamilton principle, the coupling model of piezoelectric vibrator of linear USM is built; moreover, the equivalent circuit model is obtained and a coupling equation represents the relation between electric parameters and mechanical parameters is derived which provides foundation to match the vibrator and driving circuit. 4.Combine the constitutive equation of piezoelectric ceramic with elastic-dynamical equation, geometric equation in force field and the Maxwell equation in electric field and the corresponding boundary condition equation, the FEM control equation for piezoelectric vibrator of USM to solve dynamic electro-mechanical coupling field is established by employing the principle of virtual displacement. The equation lays the foundation to study the non-linear constitutive equation of piezoelectric ceramic driven by high-power. 5.Define the dynamic indexes of characteristic of vibrator and carry out variable parameters simulation by calculating the model parameters and the electric characteristics of vibrator are simulated according to the equivalent circuit model. By numerical experimentation, the working mode of vibration of vibrator and the shock excitation results of the working frequency band which provides the mode frequency to realize bimodal are analyzed. Detailed calculation of the electro-mechanical coupling field parameters is made by programming the FEM control equation.

本课题从理论模型、有限元数值试验、有限元控制模型等方面以复合振动模式振子为例对超声电机压电振子的动力学特性及其分析方法进行了全面系统地研究,得出了许多有价值的结论,主要概括如下: 1、阐述了目前针对超声电机压电振子的主要建模方法,对压电振子动态特性的研究意义和必要性进行了论述,突出了本文研究内容的迫切性; 2、以压电陶瓷诱发弹性体发生弯曲变形为例,分析了压电陶瓷通过诱发应变来实现机电能量转换的机理;对基于纵弯模式的压电振子的运动及动力传递机理进行了分析; 3、基于模态假定,利用分析动力学的Hamilton原理,建立了面向直线超声电机压电振子的机电耦合动力学模型,并据此建立了压电振子的等效电路模型,导出了电参量与动力学特性参量的耦合方程,为压电振子与驱动电路的匹配提供了依据; 4、从压电陶瓷的本构方程出发,综合力场的弹性动力学方程、几何方程、电场的麦克斯韦方程以及相应的边界条件方程,采用虚位移原理,建立了压电振子动态问题机电耦合场求解的有限元控制方程,为研究其大功率驱动下的非线性本构模型奠定了基础; 5、界定压电振子的动力学特性指标,对压电振子的机电耦合动力学模型参数进行计算及变参数仿真;依据等效电路模型,对压电振子的电学特性进行了仿真分析;通过有限元数值实验,对压电振子工作模态附近的模态振型及工作频率附近的频段进行了激振效果分析,找出了实现模态简并的激振频率;利用有限元控制方程,通过编程计算,对压电振子的力电耦合场参数进行了详细计算,得出了一些有价值的结论。

Second, in the forth part, the writer used relationshipin quasi--variat iona1 inequal ity, pseudo-variational inequality and monotone variational inequality and used the solution of monotone GVIP to solute quasi?variational inequality,pseudo?variational inequality. Also some important conclusion were given.

二。第四部分利用了拟变分不等式、伪变分不等式及强变分不等式之间的关系,利用已知的单调广义变分不等式的解的情况来研究拟变分不等式、伪变分不等式及强变分不等式的解的情况,并得出一些重要的理论。

更多网络解释 与variational equation相关的网络解释 [注:此内容来源于网络,仅供参考]

variational equation:变分方程

variational calculus 变分学 | variational equation 变分方程 | variational principle 变分原理

variational equation:变分方程 本文来自:博研联盟论坛

variational derivative 变分导数 本文来自:博研联盟论坛 | variational equation 变分方程 本文来自:博研联盟论坛 | variational formulation 变分公式化 本文来自:博研联盟论坛

variational equation:变分方程[式]

变分方程[式] variational equation | 变分问题 variational problem | 变分解 variational solution

mixed variational equation:混合变分方程

第三边值:mixed boundary condition | 混合变分方程:mixed variational equation | 半似变分不等式问题:semi-variational-like inequality problem

variational equation, equation of variation:变分方程

变分导数|variational derivative | 变分方程|variational equation, equation of variation | 变分方法|variational method