trisection of an angle
- trisection of an angle的基本解释
-
-
三等分角
- 更多网络例句与trisection of an angle相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Years ago, the great mathematician Archimedes trisection of an arbitrary angle with compass, ruler, and mark points on the feet, so that mark point to the foot end of the length of the radius is equal to angle; to straightedge movement, so that mark-point arc always on the move, adjust, and when the foot end of the marking points on the feet, and other requirements that have a total of three points simultaneously in ruler now has been online; a total of nine actions to complete.
2400年前,大数学家阿基米德作任意角三等分,用圆规,直尺,且在尺上做记号点,使记号点至尺端的长度等于角圆弧半径;将直尺移动,使记号点始终在圆弧上移动、调整,当尺端、尺上记号点、和其它有要求的一点,共三点同时在直尺的一直线上;共九个动作完成。
- 更多网络解释与trisection of an angle相关的网络解释 [注:此内容来源于网络,仅供参考]
-
trisection of an angle:三等分角[问题]
三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一,即用圆规与直尺把一任意角三等分.问题的难处在于作图使用工具的限制.古希腊人要求几何作图只许使用直尺(没有刻度,只能作直线的尺)和圆规.这问题曾吸引着许多人去研究,
-
trisection of an angle:角的三等分
trisection 三等分 | trisection of an angle 角的三等分 | trisectrix 三等分角线
-
trisection of an angle:三等分角
三度割线;三重割线 trisecant | 三等分角 trisection of an angle | 三等分角线 trisectrix
-
problem of trisection of an angle:三等分角问题
problem of touring the world 周游世界问题 | problem of trisection of an angle 三等分角问题 | problem on knight's moves 马步问题