transforming function transformation function
- transforming function transformation function的基本解释
-
-
变换函数
- 更多网络例句与transforming function transformation function相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Only with such characteristics, the movement equations can be expressed as matrices, and the idea of transforming the movement equations to the simplest form through a nonlinear transformation can be realized;(2) The form of Zi =Yi + YTH2i Y + Y7H3i Y(2)+ Y(2)T H4i Y(2)+ YTH5i Y(3) is adhibited in the nonlinear transformation, so that the multivalued problem caused by the nonlinear transformation is avoided, and the higher order transformation can be taken next;(3) The fourth order nonlinear transformation matrices H21,H31,H41 and H51 are derived, by which the original movement equations of electric power system is transformed to Jodan form in Z space;(4) By use of the fourth order nonlinear transformation, the approximate expression of the stability boundary is obtained, in Z space it is Z1= 0,in Y space it is Y1 + YTH21 Y + YTH31 Y(2)-i- Y(2) TH41 Y(2)+YTH51 Y(3)= 0;(5) The criterion used in this paper to judge whether the system critical unstable is simple and quick;(6) The method used in this paper is a direct method, and no need to construct an energy function.
正是由 于电力系统的运动方程具有这样的特性,才能写成矩阵的形式,通过非线性变换将电力系统的运动方程变换为最简单的线性形式的思想才能得以实现;(2)将通常运用于电力系统暂态稳定性分析的Normal Form变换的形式由 Yi= Zi+ ZTh2riZ变形为 Zi= Yi+YTH2iY+YTH3iY(2)+Y(2)TH4iY(2)+YTH5iY(3),从而使得在对持续故障轨线实施同样的非线性变换以确定临界切除时间时,避免了非线性变换带来的多值性的问题,而只有在没有多值性问题的困扰下,才能采用较高阶的变换:(3)推导出了将原始电力系统系统的运动方程变换到Z空间的约当形式的非线性变换矩阵H21、H31、H41、HS1:(4)在运用四阶了「线性变换的情况下,给出了受扰动后系统的稳定边界的近似的解析表达,在Z空间为Z1=0,在y空间为: Y1+YTH21Y+YTH31Y(2)+Y(2)TH41Y(2)+YTH51Y(3)=0 (5)确定临界失稳的判据简单、快捷:对于一个复杂的电力系统,其稳定边界是相当复杂的一个高维曲面,即便是已知系统稳定边界的解析表达,要求出系统持续故障轨线何时与这一高维曲面相交,在数学上几乎是不可能实现的。
- 更多网络解释与transforming function transformation function相关的网络解释 [注:此内容来源于网络,仅供参考]
-
transforming function transformation function:变换函数
transforming factor 转化因子 | transforming function transformation function 变换函数 | transforming plant 变电站