英语人>词典>英汉 : thermal energy的中文,翻译,解释,例句
thermal energy的中文,翻译,解释,例句

thermal energy

thermal energy的基本解释
-

热能

相似词
thermal energy所属的单词分类
Energy / 能量 [159]

wind turbine  ·  wind farm  ·  wave power  ·  tidal power  ·  power lines  ·  magnetic energy  ·  jet fuel  ·  internal combustion engine  ·  greenhouse gas  ·  green energy

更多 网络例句 与thermal energy相关的网络例句 [注:此内容来源于网络,仅供参考]

So, the average density of spatial energy of spatial radius is the length of Planck of relative time-space cosmic energy follow the rise and fall of quantum spatial measurement, at original cosmic time-space set out, from the structure-energy of mass 16.38×10-71 N · m to the space-energy of 8.19×10-71 N · m and the mass-energy of 8.19×10-71 N · m, come to do not exceed the structure-energy of mass 32.76×10-71 N · m to the space-energy of 8.19×10-71 N · m and the mass-energy of 24.57×10-71 N · m, not smaller the structure-energy of mass 21.84×10-71 N · m to the space-energy of 8.19×10-71 N · m and the mass-energy of 13.65×10-71 N · m, come to do not symmetrically gradually belong to stabilization thus at reductively fluctuate, not can reversely strides across reach the stable state of structure-energy mass 24.57×10-71 N · m to the space-energy of 8.19×10-71 N · m and the mass-energy of 16.38×10-71 N · m maintain unchanging.

所以,宇宙能量的相对时空空间的半径为普朗克长度的空间的能量平均密度随宇称量子的涨与落,在原初的宇宙时空启动,从16.38×10-71N · m 质量结构能对于8.19×10-71N · m 空间能与8.19×10-71N · m 质能,成不大于32.76×10-71N · m 质量结构能对于8.19×10-71N · m 空间能与24.57×10-71N · m 质能,不小于21.84×10-71N · m 质量结构能对于8.19×10-71N · m 空间能与13.65×10-71N · m 质能,成不对称地递归于稳定而在缩小地波动,不可逆地跨越到24.57×10-71N · m 质量结构能对于8.19×10-71N · m 空间能与16.38×10-71N · m 质能的稳定状态保持不变。

The main work and the originality points of this dissertation could be concluded as the following parts:(1) To analyze systematically the mathematical model of LES of air flow in great space, under the case of isothermal and non-isothermal, as well as the combined action of buoyancy and strain. Some basic problems are studied about the LES application into airflow simulation of great space, such as boundary conditions, spatial difference scheme and time advancing scheme, time step etc., which creates the basis for the LES application to indoor airflow simulation.(2) Both the instantaneous and time averaged flow field of great space with multiple jets under isothermal and non-isothermal cases are explored with large eddy simulation method, and also discussed the dynamic characteristics and the law of fluidflow in the great space.(3) Based on the results of LES of the great space and the Fanger thermal comfort indexes, it is brought forward the concept of the series of dynamic thermal comfort evaluating indexes, which could be divided into thermal comfort index with time averaged properties PD, PPD, PMV, thermal comfort index with instantaneous properties IPD, IPPD, IPMV, and time averaged thermal comfort indexes TAPD, TAPPD, TAPMV, and transient situations time averaged thermal comfort indexes TTAPD, TTAPPD, TTAPMV. The differences among them and the calculation methods are discussed, and the four kinds of indexes are calculated with the thermal comfort index PD as an example.(4) Based on the LES results it is discussed the hot air stratification phenomena in air-conditioned buildings in the case with air supply and return registers on the ceiling and the case on the sidewall. The fundamentals of the hot air stratification are studied and the relations of estimating hot air stratification are brought forward.(5) With the advanced apparatus such as hot wire film anemometer IFA300 and laser particle field anemoscope, corresponding model test and site measurements have been done, which are compared with the simulation results and LES is proved a very promising method in air flow simulation indoor.

本文主要工作既创新点体现在以下几个方面:(1)系统分析了等温、非等温和考虑剪切力与浮升力综合作用的高大空间大涡模拟数学模型,并研究了高大空间大涡模拟在室内气流仿真应用中的一些基本问题,如边界条件、空间离散格式和时间推进格式、时间步长选择等问题,为大涡模拟在室内气流计算中的广泛应用打下了基础;(2)首次用大涡模拟方法研究了高雷诺数下高大空间多射流在等温、非等温情况下的瞬时流场和时均流场分布,并探讨了多射流流场的动态特性和流动规律;(3)基于大涡模拟的动态仿真结果和Fanger的热舒适指标,首次系统地提出了动态热舒适评价指标体系的概念:即基于时间平均参数的热舒适指标PD、PPD、PMV;基于瞬时参数的瞬时热指标IPD、IPPD、IPMV;基于时间平均热舒适指标TAPD、TAPPD、TAPMV;以及沿行动迹线的时间平均热舒适指标TTAPD、TTAPPD、TTAPMV,并分析了四类热舒适指标的差异性和计算方法,还以PD值为例对四类指标分别进行了计算;(4)基于数十种工况下空调房间大涡模拟的结果,研究了空调建筑上送上回和侧送侧回两种情况下热分层现象,并探讨了热分层的基本规律,首次提出了避免热分层现象的判断公式;(5)在暖通空调领域,首次使用IFA300热线风速仪、激光粒子速度场仪等先进设备,完成了与大涡模拟相对应的模型试验,并把实测结果与仿真结果进行了对比,说明LES在室内气流仿真方面是一种很有前景的方法。

In the spiral pipe heat exchanger exports terminal, the ammonia steam temperature has been heated up 85 ℃--95 ℃, by now, the ammonia steam had the 45kg-55kg/cm2 ammonia steam pressure, sent in the ammonia steam turbine through the constant temperature pipeline, impelled ammonia steam turbine revolving, led the generator electricity generation;After the ammonia steam makes the merit release energy, the temperature drop, the returns ammonia storage tank, passes through again adjusts the press pump to press into the spiral pipe-type heat exchangers to carry on the next circulation;Including the ammonia steam turbine entire ammonia steam road is becomes the independent closed cycle system, is isolates completely with the outside air;The ammonia steam only plays the carryhome and the shift energy role, in the electricity generation process does not consume the actuating medium, the stored energy carrier water also is only gets up the carryhome and the shift energy function,The waterway also is from becomes the independent closed cycle system, in the electricity generation process also the needless water consumption, through the actuating medium ammonia steam and the stored energy carrier water unceasing shuttle service, transforms through the heat interchanger the solar energy as the actuating medium ammonia steam heat energy and the kinetic energy,With the aid of the ammonia steam turbine heat - machine transformation function and the generator machine - electricity transformation function, has realized the solar energy hot - electricity entire conversion process, transforms continuously the solar energy into the electrical energy, power supply for foreign;The low temperature generating system must solve three big technical keys:One, the anticorrosion (has actuating medium has strong corrosiveness), two is Explosion-proof (Some actuating medium Can have the detonation with the air mix when divulging, controls warm malfunction, elevates temperature suddenly also can have detonation), three is guards against the revolution axis divulging

以太阳能低温发电系统为例,低温发电方法是这样进行的:以水作为储能载体的太阳能采集器将太阳能采集起来,将水温提升至85℃--98℃;用氨作为工作介质储于氨储罐及氨汽路中;采用螺旋管型热交换器;用调压泵将氨储罐中的氨汽压入螺旋管型热交换器的螺旋管内,用调压泵将携带太阳能的85℃--98℃的储能载体热水压入螺旋管型热交换器的螺旋管外壁空间进行循环式热交换,在热交换器的螺旋管出口端,氨汽温度已被加热到85℃--95℃,这时,氨汽具有45kg—55kg/cm2的氨汽压力,通过恒温管道送入氨汽轮机,推动氨汽轮机旋转,带动发电机发电;氨汽作功释放能量后,温度下降,返回氨储罐,再经调压泵压入螺旋管型热交换器进行下一次循环;包括氨汽轮机在内的整个氨汽汽路是自成独立的封闭循环系统,与外界空气是完全隔绝的;氨汽只起携带和转移能量的作用,发电过程中并不消耗工作介质,储能载体水也是只起携带和转移能量的作用,水路也是自成独立的封闭循环系统,发电过程中也不消耗水,通过工作介质氨汽和储能载体水的不断循环运行,通过热交换器将太阳能转化为工作介质氨汽的热能和动能,借助氨汽轮机的热—机转化功能和发电机的机—电转化功能,实现了太阳能的整个热—电转化过程,将太阳能源源不断地转变为电能,对外供电;低温发电系统要解决的三大技术关键:一是防腐(有的工作介质具有较强的腐蚀性)、二是防爆(有的介质泄漏与空气混合会产生爆炸,控温失灵,急剧升温也会产生爆炸)、三是防轴漏(汽轮机是动态旋转体,必须解决工作介质的防轴漏问题)。

更多网络解释 与thermal energy相关的网络解释 [注:此内容来源于网络,仅供参考]

thermal breeder:热(中子)滋生(反应)器

热导率结合;导热性结合 thermal bond; thermal conductivity bond | 热(中子)滋生(反应)器 thermal breeder | 热(中子)滋生反应器 thermal breeder reactor

thermal cutout switch:热切断开关

热(中子)截面 thermal cross-section; thermal neutron cross section | 热切断开关 thermal cutout switch | 热割削 thermal cutting

thermal activation energy:热激活能

461. thermal activation 热(中子)活化 | 462. thermal activation energy 热激活能 | 463. thermal aging 热老炼