symmetric [si'metrik]
- symmetric的基本解释
-
adj.
对称的
- 相似词
- 相关歌词
- Hold The Cup
- 拼写相近单词
- symmetrical
- symmetricality
- symmetrically
- symmetricalness
- symmetries
- symmetrisation
- symmetrization
- symmetrize
- symmetrized
- symmetrizes
- 更多 网络例句 与symmetric相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Thesis and mainly discuss the following problems:What we mainly discussed in the second chapter as follows:(1) S1,S2 are sets of symmetric orth-symmetric matrices;(2) S1,S2 are sets of bisymmetric matrices;(3) S1,S2 are sets of anti-symmetric orth-anti-symmetric matrices;(4) S1,S2 are sets of bi-anti-symmetric matrices;(5) S1 is the set of symmetric orth-symmetric matrices, S2 is the set of anti-symmetric orth-anti-symmetric matrices;(6) S1 is the set of bisymmetric matrices, S2 is the set of bi-anti-symmetric matrices;(7) S1 is the set of anti-symmetric orth-anti-symmetric matrices, S2 is the set of symmetric orth-symmetric matrices;(8) S1 is the set of bi-anti-symmetric matrices, S2 is the set of bisymmetricmatrices;On the base of studying the basic properties of the matrices, the expression of solutions and some numerical examples are presented.
本文第二章将主要就上述问题讨论如下几种情况: 1.S_1,S_2为对称正交对称矩阵; 2.S_1,S_2为双对称矩阵; 3.S_1,S_2为反对称正交反对称矩阵; 4.S_1,S_2为双反对称矩阵; 5.S_1为对称正交对称矩阵,S_2为反对称正交反对称矩阵; 6.S_1为双对称矩阵,S_2为双反对称矩阵; 7.S_1为反对称正交反对称矩阵,S_2为对称正交对称矩阵; 8.S_1为双反对称矩阵,S_2为双对称矩阵。
-
The solutions of ProblemⅠ,ⅡandⅢare discussed by using the generalized conjugate gradient method. When the equation is consistent, the solutions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric are successfully found; When the equation is inconsistent, the least-squares solutions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric are also found successfully. The generalized conjugate gradient method has the following traits:(1) It can judge automatically the information of solutions.
利用广义共轭梯度法,讨论了问题Ⅰ、Ⅱ和Ⅲ解的情况:当方程相容时,研究了方程的一般解、对称解、中心对称解、自反矩阵解、双对称解、对称次反对称解及其最佳逼近等问题;当方程不相容时,研究了方程的最小二乘一般解、最小二乘对称解、最小二乘中心对称解、最小二乘自反矩阵解、最小二乘双对称解、最小二乘对称次反对称解及其最佳逼近等问题。
-
This thesis focuses on studying the matrix equa-tion problem systematically, and proposed an abstract algorithm of solving the matrixequation with constraints, and established a strict convergence theory. Using this algo-rithm, we can solve the sets of matrix equation satisfying some constraint conditions,such as symmetric, antisymmetric, centrosymmetric, centroskew symmetric, re?exive,antire?exive, bisymmetric, symmetric and antipersymmetric, symmetric orthogonalsymmetric, symmetric orthogonal antisymmetric, Hermite generalized Hamilton ma-trix;So we can solve the problem with this algorithm, if the set of constrain matrixcan make a subspace in matrix space, and this algorithm also can solve the optimalapproximation and least squares problem. So this abstract algorithm has universal andimportant practical value.
本篇硕士论文系统地研究了此类问题,并找到了求解约束矩阵问题的抽象算法,并建立严格的收敛性理论,利用这一算法可求解约束条件为对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵,对称正交对称矩阵、对称正交反对称矩阵、双中心矩阵、Hermite广义Hamilton矩阵等;可以说只要约束矩阵集合在矩阵空间中构成子空间,都可以考虑用此算法求解,而且这一算法还能把矩阵方程解及其最佳逼近,最小二乘解及其最佳逼近统一处理,因此本文算法有普适性和重要的实用价值。
- 更多网络解释 与symmetric相关的网络解释 [注:此内容来源于网络,仅供参考]
-
symmetric:对称的
因此就有了从品牌A到品牌B在竞争上的影响度,和品牌B到品牌A的影响度,几乎是"对称的"(symmetric)这样的前提. 然而,现实中,消费者知觉上相似(或具有同样偏好)的两个品牌间的竞争关系并不是对称的. A现在占有大的市场份额,B只是新产品的话,
-
symmetric:对称
要拖动深度控制滑块、键入或选取新值,就必须选取"可变"(Variable) 或"对称"(Symmetric) 深度选项. 可使用下列深度选项(括号中为快捷菜单命令):如果要反转孔深度方向,请单击快捷菜单或"放置"(Placement) 上滑面板中的"反向"(Flip).
-
symmetric:匀称的
symmetric 对称的 | symmetric 匀称的 | symmetrical antenna 对称天线
-
symmetric:(指图案等)对称的
3275symbolizev. 象征,用记号表现 | 3276symmetric(指图案等)对称的 | 3277symmetricala. 对称的
-
symmetric matrix:对称矩阵
subspace 子空间 | symmetric matrix 对称矩阵 | transpose of A 矩阵A的转秩
- 加载更多网络解释 (13)