英语人>词典>英汉 : spline interpolation的中文,翻译,解释,例句
spline interpolation的中文,翻译,解释,例句

spline interpolation

spline interpolation的基本解释
-

样条内插

-

仿样内插法

-

仿样内插

相似词
更多 网络例句 与spline interpolation相关的网络例句 [注:此内容来源于网络,仅供参考]

Though comparing Canny operator and center B spline dyadic wavelet, the following conclusion is proven in this dissertation: a Center B spline function has tight support and Canny operator hasn't. b Center B spline function asymptotic convergence to Gaussian function and the derivative of Center B spline function asymptotic convergence to Canny operator. c The derivative of fourth order center spline B function is more suitable as a optimal edge detector than Canny operator. d Center B spline function can balance the smoothing and approximation of original data, and the fourth center B spline function is the only optimal solution of two order smoothing problem. e The error between the valve of time-frequency uncertainty of the fourth center B spline function and the lower bound of time-frequency uncertainty does not exceed 0.143% of the lower bound. f The derivative of center spline B function can construct a stability dyadic wavelet and can give a fast algorithm for multiscale edge detection, but Canny operator can do neither.

作者给出了Canny算子与中心B样条二进小波严格的比较证明,得出如下结论:a中心B样条函数具有紧支集,Canny算子不具有紧支集。b中心B样条函数的极限收敛于高斯函数,中心B样条函数的导数收敛于Canny算子。c四阶中心B样条函数的导数比Canny算子更接近最佳边缘检测滤波器。d中心B样条函数比高斯函数更能兼顾对原函数平滑和逼近的折中要求,并且四阶中心B样条函数是二阶逼近问题的唯一最优解。e四阶中心B样条函数的时频测不准关系值与时频测不准关系下界的逼近误差不超过0.143%。f中心B样条函数的导数可以构成稳定的二进小波,存在快速的多尺度算法;而Canny算子不构成稳定的二进小波,无法给出快速的多尺度算法。

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

更多网络解释 与spline interpolation相关的网络解释 [注:此内容来源于网络,仅供参考]

Spline interpolation:样条插补

line 样条插补(Spline interpolation) 样条插补( ) 计算分段多项式 三次样条插补 10.3 conv deconv poly polyder polyfit polyint polyval polyvalm residue roots 多项式( 多项式(Polynomials) ) 多项式相乘 多项式相除 由根创建多项式 多项式微分 多项式拟合 积分多项式分析 求多项式的值 求矩阵多项式的值 求部分分式表达

Spline interpolation:样条插值/样条内插

spline curve 样条曲线 | spline interpolation 样条插值/样条内插 | spline surface 样条曲面

Spline interpolation:样条内插

spline function 样条函数 | spline interpolation 样条内插 | splitting 分裂

Spline interpolation:样条插值

样条逼近|spline approximation | 样条插值|spline interpolation | 样条回归|spline regression

cubic spline interpolation:三次样条插值

cubic spline integration 三次样条积分 | cubic spline interpolation 三次样条插值 | cubic spline 三次样条

加载更多网络解释 (6)