sobolev space
- sobolev space的基本解释
-
-
水列夫空间
- 相似词
- 更多 网络例句 与sobolev space相关的网络例句 [注:此内容来源于网络,仅供参考]
-
There are series of papers studying the solvability of an incompressible, viscous, instationary fluid contained in a domian bounded entirely by a free surface. In 1977, Solonnikov proved its local solvability in a Holder space for any initial date but without surface tension. In 1984, he considered the same problem in a Sobolev space with surface tension being taken into account. In I992, Mogilevskii and Solonnikov treated the same problem in a Holder space, where the coefficient of surface tension is not a constant. There are also short-time existence results for the solvability of an incompressible, vicous, unsteady fluid bounded above by a free surface and below by a fixed bottom which approach horizontal planes at infinity. In 1981, Beale proved its local solvability in a Sobolev space for any initial date but without surface tension. In 1983, Allain were concerned with the same problem in R〓 with surface tension but under the assumption that the initial fluid domain was near a horizontal strip. In 1987, he obtained the same result without the preceding assumption. In 1996, Tani solved the same problem in R with surface tension. For the solvability of an incompressible viscous instationary fluid in Ω R bounded inside by a free surface S and outside by a rotating boundary S, in 1995 Ciuperca proved its local existence in a Sobolev space for any initial date but without surface tension. In this paper, we consider the same problem with surface tension.
对于边界完全是由自由边界组成的有界区域中粘性不可压流体的非定常运动问题,Solonnikcv于1977年在忽略表面张力情况下证明了初值问题小时间解在Holder空间的存在性,于1984年在有表面张力情况下证明了初值问题问题小时间解在Sobolev空间的存在性,Mogilevskii和Solonnikov于1992年在表面张力系数可以不是常数情况下证明了初值问题小时间解在Holder空间的存在性;对于上面是自由边界、下面是固定边界且两边界在无限处趋于水平的无限区域中粘性不可压流体的非定常运动问题,Beale于1981年在忽略表面张力情况下证明了初值问题小时间解在Sobolev空间的存在性,Allain于1983年在有表面张力情况下证明了R中初值问题小时间解在Sobolev空间的存在性,但其中假定初始区域近似是个水平条,他于1987年去掉了这个假定得到同样的结果,Tani于1996年在有表面张力情况下证明了R中初值问题小时间解在Sobolev空间的存在性;对于R中内面是自由边界、外面是旋转边界S的有界区域中粘性不可压流体的非定常运动问题,Ciuperca于1995年在忽略表面张力情况下证明了初值问题小时间解在Sobolev空间的存在性,本文考虑了在有表面张力情况下初值问题可解性问题。
-
For example, U-space is uniformly regular and which makes it has fixed point property, U-space is uniformly non-square and thus super-reflexive, uniformly convex space and uniformly smooth space are U-spaces, and an Banach space is an U-space iff its dual space is U-space, etc. In1990s, a lot of work had been done on U-space theory, e.g., Tingfu Wang and Donghai Ji introduced the concepts of pre U-property and nearly U-property. Under the structure of Orlicz space, they made systematic investigation of these properties, and gave the criteria for an Orlicz space to have U-property.
U-空间具有一致正规结构进而具有不动点性质;U-空间是一致非方的,进而也是超自反的;一致凸空间和一致光滑空间是U-空间;Banach 空间为U-空间的充要条件是其对偶空间为U-空间,等等。20世纪90年代,国内外学者对U-空间理论做了很多工作,王廷辅,计东海等人先后引入了准U-性质与似U-性质的概念,并在Orlicz空间框架下对有关性质进行了系统研究,完整给出了Orlicz空间具有各种U-性质的判据。
-
By describing Pythagorean theorem, the first time-space view explain the plane-line thought which impacts human's thinking manner; the second time-space view is absolute time-space theory of Newton and three-dimensions space-time view intersected by space-time; the third space-time view is curve space-time view which is generated from Einsteinian relative theory. The fourth space-time view is the directional, irreversible entropy time-space thought; the fifth time-space view is dense time-space view of cracked fractal generated from chaos-fractal theory.
第一时空观是通过对勾股定理的描述来说明影响人们思维方式的平直时空观;第二时空观是牛顿的绝对时空理论,是时空分割的立体三维时空观;第三时空观是爱因斯坦的相对论理论所带来的弯曲时空观;第四时空观是具有方向不可逆的熵时空观;第五时空观是混沌与分形理论所带来的破碎分形的稠时空观。
- 更多网络解释 与sobolev space相关的网络解释 [注:此内容来源于网络,仅供参考]
-
sobolev space:水列夫空间
sobolev embedding theorem 水列夫嵌入定理 | sobolev space 水列夫空间 | sojourn time 逗留时间
-
sobolev space:索伯列夫空间
索伯列夫不等式|Sobolev inequality | 索伯列夫空间|Sobolev space | 索伯列夫引理|Sobolev lemma
-
weighted Sobolev space:无界区域
构件:Module | 无界区域:weighted Sobolev space | 加权值法:weighted value method