single electrode
- single electrode的基本解释
-
-
单电极, 单极
- 更多网络例句与single electrode相关的网络例句 [注:此内容来源于网络,仅供参考]
-
His firm's technology has reduced the brainwave pickup to the minimum specification imaginable—a single electrode.
他的公司将脑电波的接收器减小到可想象的最小尺寸——单个电极。
-
The control principle of electrostatic shaping was introduced according to the balance between electrostatic force and resulting force formed by membrane deformation and the complex shaping process of SMEC. Then, taking the trisection circularity electrode for an example, the distribution characteristic of electric potential in the electrostatic field was analyzed, namely, the expression of potential function in the electrostatic field was deduced by Laplacian equation. And then, by combining the difference equation with electric potential expression, the numerical solutions of electrostatic force in single electrode mode and trisection circularity electrode mode were disposed. Finally, the calculated figure was compared with the ideal paraboloid and comparison shows that more accuracy would be achieved by multi-electrode control.
根据静电力与薄膜变形载荷作用力之间的平衡关系和静电拉伸薄膜反射镜成形的复杂过程,介绍了薄膜反射镜静电成形的控制原理;以三等分环状电极为例,分析了静电场中空间电势分布特性,即从拉普拉斯方程推导出静态场势函数的表达式;然后,利用差分与电势方程结合的方法,对单电极电场力和三等分环状电极电场力进行了数值求解;最后,将计算面形与理想抛物面进行了比较,结果显示,单电极情况下得到的薄膜反射镜面形不是理想抛物面,若采用多电极控制可获得更高的控制精度。
-
The control principle of electrostatic shaping was introduced according to the balance between electrostatic force and resulting force formed by membrane deformation and the complex shaping process of SMEC. Then, taking the trisection circularity electrode for an example, the distribution characteristic of electric potential in the electrostatic field was analyzed, namely, the expression of potential function in the electrostatic field was deduced by Laplacian equation. And then, by combining the difference equation with electric potential expression, the numerical solutions of electrostatic force in single electrode mode and trisection circularity electrode mode were disposed.
根据静电力与薄膜变形载荷作用力之间的平衡关系和静电拉伸薄膜反射镜成形的复杂过程,介绍了薄膜反射镜静电成形的控制原理;以三等分环状电极为例,分析了静电场中空间电势分布特性,即从拉普拉斯方程推导出静态场势函数的表达式;然后,利用差分与电势方程结合的方法,对单电极电场力和三等分环状电极电场力进行了数值求解;最后,将计算面形与理想抛物面进行了比较,结果显示,单电极情况下得到的薄膜反射镜面形不是理想抛物面,若采用多电极控制可获得更高的控制精度。