self-dual
- self-dual的基本解释
-
-
自对偶的
- 相关中文词汇
- 自对偶的
- 更多网络例句与self-dual相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We prove that any irreduciblesymmetric self-dual Lie algebra 〓 whose Cartan subalgebra consists of semi-simpleelements is in one of the following classes:(1)〓 is simple;(2)〓 is 1-dimensional;(3)〓is solvable.
第五节讨论Cartan子代数由半单元构成的对称自对偶李代数的结构,证明了不可约对称自对偶李代数g如果它的Cartan子代数由半单元构成,那么它只能是下列情形之一:(1)g为单李代数;(2)g是1维的;(3)g是可解的。
-
In section 7,we give a way to construct even dimensional symmetric self-dual Liealgebras from the point of view of cohomology.
在最后一节中,我们从上同调的观点,给出了偶数维对称自对偶李代数的一种构造方法。
-
There are three classes of dual polyhedral links which can be explored: the tetrahedral link is self-dual, the hexahedral and octahedral link, as well as the dodecahedral and icosahedral link are dual to each other.
从手性角度考虑,对偶变换具有手性保持的特征,十个多面体链环分为六组对偶多面体链环。
-
At length 50, we got 3 inequivalent extremal self-dual [50,25,10] codes.
将这个性质用在寻找长度为66的自对偶码,我们得到至少五十个对应於w2互不等价的极端自对偶[66,33,12]码与一个对应於w1,β=32的极端自对偶[66,33,12]码;用在寻找长度为50的自对偶码上,我们得到三个互不等价的极端自对偶[50,25,10]码。
-
Because Conference matrices and Hadamard matrices are related to Paley matrices,in this paper we define the normalized Conference matrices and generalized normalized Hadamard matrices,and we show some special properties of them. Also we constructed a doubly even self-orthogonal code from normalized Conference matrix and a doubly even self-dual code from generalized normalized Hadamard matrix.
由于Conference矩阵,Hadamard矩阵与Paley矩阵紧密相联,本文定义了正规Confersnce矩阵和正规Hadamard矩阵,讨论了他们的一些特性,并且利用正规Conference矩阵构造了一个自正交的双偶码刷用正规Hadamard矩阵构造了一种自对偶的双偶码。
- 加载更多网络例句 (25)
- 更多网络解释与self-dual相关的网络解释 [注:此内容来源于网络,仅供参考]
-
self-dual connection:自对偶联络
自对偶[的]||self-dual | 自对偶联络||self-dual connection | 自反巴拿赫空间||reflexive Banach space
-
self-dual system:自对偶系统
自对偶 self-dual | 自对偶系统 self-dual system | 自等价 self-equivalence
-
self-dual system:自对偶系
self-dual matroid ==> 自对偶拟阵 | self-dual system ==> 自对偶系 | self-dump rake ==> 自翻式横向搂草机
-
self-dual function:自对偶函数
self-driven line-scanning circuit ==> 自激行扫描电路 | self-dual function ==> 自对偶函数 | self-dual groups ==> 自对偶群
-
self-dual matrix:自对偶矩阵
自对偶图 self-dual graph | 自对偶矩阵 self-dual matrix | 自对偶系统 self-dual system
- 加载更多网络解释 (2)