self-adjoint
- self-adjoint的基本解释
-
-
自伴的
- 相似词
- 更多 网络例句 与self-adjoint相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper,a systematic direct perturbation method of dark solitons is found.Having analyzed the mistakes in earlier works on perturbation method for dark solitonsand essence of the direct perturbation method for bright solitons,we notice that to in-troduce the adjoint solutions of the squared Jost solutions and to prove the completenessare crucial to the problem.Giving up the unnecessary scheme of introducing the adjointoperator in the bright soliton case,we directly find the adjoint solutions by meetingthe demand for the orthogonality that inner product of the squared Jost solutions andits adjoint should be proportional to a δ function in the case of continuous spectra.The corresponding adjoint operator is thus found.Taking into account the reductiontransformation,we find a correct description for the completeness of the squared Jostsolutions and directly verify its validity with explicit expressions of the squared Jostsolutions.
本论文建立了系统的暗孤子直接微扰方法,在对前人关于暗孤子微扰方法的错误以及亮孤子直接微扰方法的本质作了充分的分析后,认识到引入平方Jost解的伴随解和证明完备性是问题的关键,撇开过去亮孤子情况首先引入伴随算子的非必要作法,直接从平方Jost解与其伴随解的内积在连续谱时正比于δ函数这一正交性要求出发,找出了伴随解,同时得出了应有的伴随算子,在考虑到约化变换性后,得到了暗孤子情况的平方Jost解的完备性的正确表述,并在单个暗孤子的情况利用平方Jost解的显式直接验证了它的正确性。
-
Firstly,by using the estimating methodfor the compact embedding operators(from weighted Sobolev space to the weighted〓space),we obtain a necessary and sufficient condition for the discreteness of thespectrum of certain differential operators.Secondly,based on the property of thespectrum of difinitizable operators on the Krein space,we consider the left definitedifferential equations with middle deficiency indices,and give a completecharacterization for self-adjoint(J-self-adjoint)differential operators in theindefinite inner product space 〓.Especially,we prove that all the J-self-adjoint differential operators are definitizable.
我们首先运用加权Sobolev空间到加权〓空间嵌入算子紧性的判别方法,证明一类加权自伴微分算子具有离散谱的充要条件;然后,基于Krein空间上可定化算子谱的性质,对于具中间亏指数的左定型微分方程,建立其相应的微分算式在不定度规空间〓上所生成自伴算子的完备性刻画(特别证明了J-自伴微分算子具有可定化性)。
-
We also give all positive self-adjoint extensions ofsingular differential operators,and all positive self-adjoint operators generated by theproducts of differential expressions 〓,where l is an nth order differentialexpression.The result that each positive self-adjoint operator is not necessarily theform of operator product 〓.This answers an open problem proposed by theauthors recently.
我们也给出了奇型微分算子的所有正自伴扩张形式及乘积微分算式〓所诱导的所有正自伴算子形式,证明〓所诱出的正自伴算子不必须是由算子乘积〓为l所生成的算子)的形式,从而回答了作者新近提出的一个公开问题。
- 更多网络解释 与self-adjoint相关的网络解释 [注:此内容来源于网络,仅供参考]
-
self-adjoint:自轭
self-adaption 自适应 | self-adjoint 自轭 | self-adjusting 自(动)调整
-
self-adjoint:自伴的
self-adhesive 自粘的 | self-adjoint 自伴的 | self-adjustable 自调的
-
self-adjoint:自轭的
self absorption coefficient 自吸收系数 | self adjoint 自轭的 | self adjoint matrix 自共轭矩阵
-
self-adjoint:自共轭
共轭码:adjoint code | 自共轭:Self-adjoint | 共沉淀法:polymer-network gel method
-
operator, self-adjoint:自轭算符
散射算符 operator, scattering | 自軛算符 operator, self-adjoint | 空間交換算符 operator, space-exchange
- 加载更多网络解释 (6)