ring of integers
- ring of integers的基本解释
-
-
整数环
- 更多网络例句与ring of integers相关的网络例句 [注:此内容来源于网络,仅供参考]
-
A ring of integers derived from the set of all integers according to the following rule: Let N be an integer greater than 1, and A and B be two other integers; if N is a factor of A?
由全体整数的集合按下列规则产生的整数环:设N为大于1的整数,A和B是两个其它整数,若N是A?
-
According to algebraic number theory,all solutions of Pocklington equation in a ring of integers of a quadratic imaginary field are determined,which implies that the equation has only several solutions in the ring.
利用代数数论的理论与方法,决定了一个重要的不定方程在一个特殊的虚二次域整数环中的解,从而指出这个方程在比整数环更大的环中也仅有有限个解。
-
A ring of integers derived from the set of all integers according to the following rule: Let N be an integer greater than 1, and A and B be two other integers; if N is a factor of A·B, then A is said to be congruent to a B modulo-N.
由全体整数的集合按下列规则产生的整数环:设N为大于1的整数,A和B是两个其它整数,若N是A·B的因子,则称A与B是模N的同余式。
-
Browkin and so on, an available method to get improved bounds for the norm of exceptional places in computing K〓 groups for the ring of integers in quadratic imaginary fields is obtained and as an application, K〓Z is determined.
Browkin等人工作的基础上,得到了估计虚二次域整环的K〓群的计算中例外位的范数的界的较有效的方法,并且作为应用,确定了K〓Z。
-
In this paper, after the introduction of the basic concepts and the main results on K〓 theory, relative K〓 theory and the theory of classical groups of degree 2 which is related to K〓 theory, we study the problems of the computation of K〓 for the ring of integers of quadratic imaginary fields, examples of subrings of quadratic fields which are not universal for GE〓 and generating set of the Cokernel of the canonical homomorphism from K〓 to K〓.
本文在介绍了K〓理论和相对K〓理论以及与K〓理论有关的2阶典型群的基本概念及主要成果之后,对于虚二次域代数整环的K〓群的计算,非GE〓泛的虚二次域的子环以及K〓到K〓的自然同态的余核的生成元集等问题进行了研究。
- 加载更多网络例句 (7)
- 更多网络解释与ring of integers相关的网络解释 [注:此内容来源于网络,仅供参考]
-
ring of integers:整数环
ring of formal power series 形式幂级数环 | ring of integers 整数环 | ring of matrices 矩阵环
-
ring of rational integers:有理整数环
四元素环 ring of quaternions | 有理整数环 ring of rational integers | 右乘变换环 ring of right multiplications
-
ring of algebraic integers:代数整数环
代数整数|algebraic integer | 代数整数环|ring of algebraic integers | 代数子群|algebraic subgroup, k-closed subgroup