riemannian manifold
- riemannian manifold的基本解释
-
-
黎曼廖
- 更多网络例句与riemannian manifold相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In the second chapter, we investgate the Type II singularity of mean curvature flow of compact hypersurface in Riemannian manifold.
在第二章中我们讨论了一般黎曼流形中紧致超曲面在平均曲率流下的形变并且对它们的第二类奇点进行了分析。
-
Also we discuss the existence of infinite closed complete geodesic in a nocompact Riemannian manifold with nonnegative curvature.
利用核心的思想,我们还探讨了无穷多闭测地线等几何结构问题。
-
Let be an n dimensional Riemannian manifold, the properties of harmonic functions on it are the interesting problems in geometric analysis.
在黎曼流形上的分析中,很大一部分是对流形上函数的调和性研究[1 - 2 ] ,并从中得到关于这些函数的性质。
-
In the second part of this paper, by considering the geometric properties of some well-known classical Riemannian manifold and combining with results we had got, we give the definition of the parallel rays in a complete nocompact Riemannian manifold M, which are usual parallel rays when M is restricted to Euclidean space R.
本文的第二部分,基于对一些典型的黎曼流形几何性质的观察,结合已有的研究成果,我们首次给出了完备非紧黎曼流形上平行射线的定义,该定义在欧式空间中就是普通的平行射线。
-
Secondly,for nonlinear vibratory systems,the relationship between a class of stationary geodesics of the Riemannian manifold and the nonlinear normal modes is found.
进而,将类似的对应关系推广应用到非线性振动系统中,得到了非线性模态与 Riemann 流形上的极值测地线之间的对应关系。
- 加载更多网络例句 (21)
- 更多网络解释与riemannian manifold相关的网络解释 [注:此内容来源于网络,仅供参考]
-
riemannian manifold:黎曼廖
riemannian geomety 椭圆几何 | riemannian manifold 黎曼廖 | riemannian space 黎曼廖
-
riemannian manifold:黎曼流形
黎曼可积的|integrable in the sense of Riemann | 黎曼流形|Riemannian manifold | 黎曼上积分|Riemann upper integral
-
complete Riemannian manifold:完备黎曼流形
complete revolution | (公转)周转 完全运行 | complete Riemannian manifold | 完备黎曼流形 | complete rotation | (公转)周转完全运行
-
normal contact Riemannian manifold:正规切触黎曼流形
normal contact 定常接点,正规接点=>定位接点 | normal contact Riemannian manifold 正规切触黎曼流形 | normal continued fraction 正规连分数
-
Complete nocompact Riemannian manifold:完备非紧黎曼流形
拟常曲率空间:a Riemann manifold with quasi constant curvature | 完备非紧黎曼流形:Complete nocompact Riemannian manifold | 法:method