resolvent transformation
- resolvent transformation的基本解释
-
-
豫解变换
- 相似词
- 更多 网络例句 与resolvent transformation相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The main results are as follows: the relations between local fractional integrated semigroups and the corresponding Cauchy problem, global fractional integrated semigroups and regularized semigroups are given; introduction of the notion of regularized resolvent families, and the generation theorem and analyticity criterions for regularized resolvent families are obtained; the spectral inclusions between fractional resolvent family and its generator, and the approximation for fractional resolvent families in the cases of generators approximation and fractional orders approximation; elliptic operators with variable coefficients generating fractional resolvent family on L^2 by using numerical range techniques; and the L^p theory for elliptic operators with real coefficients highest order are obtained by Sobolev''s inequalities and the a priori estimates for elliptic operators; and a kind of coercive differential operators generates fractional regularized resolvent family by applying the Fourier multiplier method, functional calculus and some basic properties of Mittag-Leffler functions.
主要结论是:给出了局部分数次积分半群和相应的Cauchy问题的关系以及分数次积分半群和正则半群的关系;引入了正则预解族的概念,并给出了其生成定理和解析生成法则;给出了分数次预解族与其生成元的谱包含关系,并研究了在生成元逼近和分数阶逼近两种情况下相应的预解族的逼近问题;利用数值域方法证明了具变系数的椭圆算子在L^2上生成分数次预解族;利用Sobolev不等式和椭圆算子的先验估计证明了具变系数的椭圆算子在其最高项系数为实数时在L^p上生成分数次预解族;运用Fourier乘子理论、泛函演算和Mittag-Leffler函数证明了一类强制微分算子可以生成分数次正则预解族,并给出了该预解族的范数估计。
-
Only with such characteristics, the movement equations can be expressed as matrices, and the idea of transforming the movement equations to the simplest form through a nonlinear transformation can be realized;(2) The form of Zi =Yi + YTH2i Y + Y7H3i Y(2)+ Y(2)T H4i Y(2)+ YTH5i Y(3) is adhibited in the nonlinear transformation, so that the multivalued problem caused by the nonlinear transformation is avoided, and the higher order transformation can be taken next;(3) The fourth order nonlinear transformation matrices H21,H31,H41 and H51 are derived, by which the original movement equations of electric power system is transformed to Jodan form in Z space;(4) By use of the fourth order nonlinear transformation, the approximate expression of the stability boundary is obtained, in Z space it is Z1= 0,in Y space it is Y1 + YTH21 Y + YTH31 Y(2)-i- Y(2) TH41 Y(2)+YTH51 Y(3)= 0;(5) The criterion used in this paper to judge whether the system critical unstable is simple and quick;(6) The method used in this paper is a direct method, and no need to construct an energy function.
正是由 于电力系统的运动方程具有这样的特性,才能写成矩阵的形式,通过非线性变换将电力系统的运动方程变换为最简单的线性形式的思想才能得以实现;(2)将通常运用于电力系统暂态稳定性分析的Normal Form变换的形式由 Yi= Zi+ ZTh2riZ变形为 Zi= Yi+YTH2iY+YTH3iY(2)+Y(2)TH4iY(2)+YTH5iY(3),从而使得在对持续故障轨线实施同样的非线性变换以确定临界切除时间时,避免了非线性变换带来的多值性的问题,而只有在没有多值性问题的困扰下,才能采用较高阶的变换:(3)推导出了将原始电力系统系统的运动方程变换到Z空间的约当形式的非线性变换矩阵H21、H31、H41、HS1:(4)在运用四阶了「线性变换的情况下,给出了受扰动后系统的稳定边界的近似的解析表达,在Z空间为Z1=0,在y空间为: Y1+YTH21Y+YTH31Y(2)+Y(2)TH41Y(2)+YTH51Y(3)=0 (5)确定临界失稳的判据简单、快捷:对于一个复杂的电力系统,其稳定边界是相当复杂的一个高维曲面,即便是已知系统稳定边界的解析表达,要求出系统持续故障轨线何时与这一高维曲面相交,在数学上几乎是不可能实现的。
-
Chapter 1 gives the background,current research process of relatedproblems and summarizes this thesis\'s work.In chapter 2,we study the Brownian motion with holding and jumping on the boundary.We use the resolvent method to obtain the infinitesimal generator because the domain of the infinitesimal generator is essentially the same as the range of the resolvent.Knowledge of this range and of the differential operator determines uniquely the infinitesimal generator.Since the semigroup generated by the DHJ is not strongly continuous,to use the nice property of strongly continuous semigroup in analytic theory,in chapter 3 we show that the dual is strongly continuous and derive ergodicity through spectral radius formulas and finally obtain the ergodic theorem by duality. In chapter 4,we discuss a class of a more general process---one dimensional Feller diffusion proposed by W.Feller in 1954.The Feller diffusion allows the possibility of jumps from boundary to boundary,not only from boundary to the interior.We give the stationary distribution of this process.
具体地,本文的结构如下:第一章给出了问题产生的背景,研究现状及本文的主要工作;第二章研究了在边界上逗留后随机跳的布朗运动,我(来源:3dABC论文网www.abclunwen.com)们用预解算子的方法得到其无穷小生成元,因为无穷小生成元的定义域本质上就是预解算子的值域,知道这个值域和微分算子形式就能唯一地决定无穷小生成元;由于DHJ过程产生的半群不是强连续的,为利用强连续半群的一些漂亮性质,在第三章中我们证明其对偶半群是强连续的,然后由谱半径公式得到遍历性并且最后由对偶得到遍历定理;第四章讨论了Feller在1954年引入的更广的一类过程----一维Feller扩散过程,Feller扩散过程允许有从边界到边界的跳发生,即不仅仅局限于从边界到内部的跳,在这一章中,我们给出了一维Feller扩散过程的平稳分布;在第五章,我们讨论了一些相关的问题,给出了DHJ过程对应的PDE问题及特征值与收敛速度的关系。
- 更多网络解释 与resolvent transformation相关的网络解释 [注:此内容来源于网络,仅供参考]
-
resolvent transformation:豫解变换
resolvent set 豫解集 | resolvent transformation 豫解变换 | resonance condition 共振条件