pythagorean numbers
- pythagorean numbers的基本解释
-
-
毕达哥拉斯数
- 更多网络例句与pythagorean numbers相关的网络例句 [注:此内容来源于网络,仅供参考]
-
While trying to get a grasp of the septile aspect, I went back to John Addey (1920 1982), a key voice in bringing Pythagorean understanding of numbers into modern astrology. He wrote Harmonics in Astrology in 1976; it is now back in print after many years. He writes that the number seven (and the 7th harmonic)"is a difficult number to pin down" and "somewhat elusive to interpret."
为了试图给7分相位一个浅显的解释,我找到了历史上的一位占星家,名叫 John Addey ,将毕达哥拉斯对数字的理解带进了现代占星学,他1976年出版了一本《占星中的数字和谐》,书中有关数字7和7分相位,他写道"它是一个很难确定,很难下结论的数字"并且"不太容易解释和捉摸"。
- 更多网络解释与pythagorean numbers相关的网络解释 [注:此内容来源于网络,仅供参考]
-
pythagorean numbers:毕达哥拉斯数
pythagoras theorem 毕达哥拉斯定理 | pythagorean field 毕达哥拉斯域 | pythagorean numbers 毕达哥拉斯数
-
pythagorean numbers:毕达哥斯
Pythagoras theorem 毕氏定 ,毕达哥 斯定 ,曾用名"商高定 " | Pythagorean numbers 毕达哥斯 | Pythagorean triangle 毕达哥 斯三角形
-
Pythagorean Numbers and Fermats Theorem:第十四章
第十三章 The Regular Polyhedrons | 第十四章 Pythagorean Numbers and Fermats Theorem | 第十五章 The Theoren of the Arithmetic and Geometric Means
-
Pythagorean Numbers and Fermat's Theorem:第十四章
第十三章 The Regular Polyhedrons | 第十四章 Pythagorean Numbers and Fermat's Theorem | 第十五章 The Theoren of the Arithmetic and Geometric Means
-
Pythagorean Numbers and Fermat's Theorem:(畢氏數與費馬定理)
13. The Regular Polyhedrons(正多面體) | 14. Pythagorean Numbers and Fermat's Theorem(畢氏數與費馬定理) | 15. The Theorem of the Arithmetic and Geometric Means(算術與幾何平均定理)