英语人>词典>英汉 : odd dimensional space的中文,翻译,解释,例句
odd dimensional space的中文,翻译,解释,例句

odd dimensional space

odd dimensional space的基本解释
-

奇维空间

相似词
更多 网络例句 与odd dimensional space相关的网络例句 [注:此内容来源于网络,仅供参考]

Regarding (6) type, when tradition Time variable t is two spatial vectors (+ psi 1i) and (- psi 2j) Crossed products v also is not 0, it (x1, x2, x3) differs 90 compared to on speed with the three-dimensional space in the space by the pure imaginary number attribute, I=e^I pi, therefore it Number space has in the physical property with the dot product constitution the difference, because Crossed products psi 1i (X psi 2j extremely small visible it is equal to zero under the conventional speed, but is very big in the object movement speed time, Crossed products psi 1i (X psi 2j in the physical quantity and for the quantum mechanics in may not to the easy quantity, its space and the conventional space is different, the performance is intrinsic or the interior space If the definition vector (+ psi 1i) and (- psi 2j) the dot product constitutes the three-dimensional space (x1, x2, x3) is exterior space, but the three-dimensional space which (+ psi 1i) and (- psi 2j) Crossed products constitutes by the vector is the internal space, contrasts its component

对于⑥式,传统时间量t为两个空间矢量(+ψ1i)与(-ψ2j)的叉积比上速度v且不为0,其与三维空间(x1,x2,x3)在空间上相差90度以纯虚数表征,I=e^Iπ,故其与点积构成的实空间有物理性质上的不同,因为在常规速率下叉积ψ1i(Xψ2j非常小可视其等于零,而在物体运动速率很大时,叉积ψ1i(Xψ2j之中物理量与则为量子力学中的不可对易量,其空间与常规空间不同,表现为一个内在或内部性空间。若定义矢量(+ψ1i)与(-ψ2j)点积所构成的三维空间(x1,x2,x3)为外部空间,而由矢量(+ψ1i)与(-ψ2j)叉积而构成的三维空间为内部空间,对比其分量

In the even-odd method, according to the symmetry properties of odd and even functions, the function to describe the surface distribution of a flat is decomposed to four components: even-odd odd-even even-even and odd-odd functions, the absolute distribution of three flats are obtained by solving every component.

奇偶函数法根据函数的奇偶特性,将平面面形函数分解为:偶奇、奇偶、偶偶和奇奇函数,再分别求出各项,从而得到三个平面的绝对面形。

Presenting a theorem of one dimensional time multiplying ,also a demonstration to the theorem which says that Any point in 3 dimensional spaces of the universe at an certain universal moment possesses equivalent physical quantities of one dimensional time that is equal to total amounts of one dimensional time of the universe at same universal moment; Any point in 3 dimensional spaces of the universe at an certain universal moment , its possessed physical quantities of one dimensional time has an constant ratio with respect to one dimensional space , which is universally equal to space time impedance.

给出了一维时间增殖定理及其证明。该定理指出:在任意宇宙时刻,宇宙三维空间中任意一点具有的一维时间物理量量值均相等并等于在该宇宙时刻宇宙具有的一维时间物理量总量;在任意宇宙时刻,宇宙三维空间中任意一点的一维时间物理量的一维空间变化率均相等且恒等于时空阻抗。

更多网络解释 与odd dimensional space相关的网络解释 [注:此内容来源于网络,仅供参考]

odd dimensional space:奇维空间

odd 奇的 | odd dimensional space 奇维空间 | odd even check 奇偶校验