nuclear excitation by electron transition
- nuclear excitation by electron transition的基本解释
-
-
电子跃迁致核激发效应, 电子跃迁致核激发, 尼特效应
- 相似词
- 更多 网络例句 与nuclear excitation by electron transition相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In order to improve the reliability of the nuclear Generating Sets and the stabilization of the power system, prevent the long time low frequency oscillation caused by the disturbed of the outside electrical net, assured improving the stabilization margin of the nuclear generating sets in the precondition of enough transient stability, validate the sensitivity of the parameter to the damping of Generating Sets of the MEC5220 digital excitation adjustor produce in Japan that used in the Second Project of Qinshan Nuclear Power Plant, confirm the parameter rationality of the digital excitation adjustor, optimize the parameter of PSS, in this paper, we put up a in-depth study to the principle of MEC5220 digital adjustor produce in Japan by the PSS/E software that develop by the PTI Company in the USA, completed the modeling of the excitation adjustor, PSS, generator, excitor, described the performance of this excitation adjustor, analyzed the essential reason that caused the low frequency oscillation, illuminated the factor that influence the damping characteristic of the MEC5220 digital excitation adjustor. Based on model and emulate, this paper optimized the primary parameter of the excitation adjustor, make a reasonable regulation to the PSS parameter.
为提高核电机组的运行可靠性和接入系统的安全稳定性,防止在外电网的干扰下核电机组发生长时间的低频振荡,保证机组在暂态稳定的前提下提高其稳定裕度,验证秦山核电二期核电机组所配日产MEC5220型数字式励磁调节器参数对机组阻尼的灵敏性,确定数字式励磁调节器的参数的合理性,优化PSS整定参数,本文利用美国PTI公司研发的PSS/E软件对日产MEC5220型数字调节器的原理进行进行了深入细化的研究,完成了励磁调节器、PSS、发电机、励磁机的建模,描述了该型励磁调节器的性能,分析了产生低频振荡的根本原因,阐明了影响阻尼特性的因素。
-
In order to testify our whether correction to Rossi's exchange term andthe potential of electron and nucleus is reasonable, we calculate 〓 moleculeelastic differential scattering cross section by electron impact on 100eV, ourresult is obviously better than Rossi's. Then we calculate elastic differentialscattering cross section at 150eV. In order to check the program thatcalculates molecule excitation cross section by electron impact, we calculatehydrogen excitation cross section from ground state to 〓 state at 20eVand 30eV, oxygen excitation cross section from ground state to 〓 state at15eV and 20eV. These calculations are in agreement with other theoreticresults, and experiment measure. Finally, we calculate sulfur moleculeexcitation〓 cross section by electron impact at5eV,7eV,9eV, 11eV, 13eV,15eV, and draw curve of excitation total crosssection corresponding to incident electron energy.
为了核对我们修改的计算激发态的程序是否正确,计算了电子与氢分子碰撞从基态激发到〓态入射能量分别为20eV和30eV时的微分截面以及电子与氧分子碰撞从基态激发到〓态入射能量分别为15eV和20eV时的微分截面,与别人的理论计算结果、实验的测量值基本一致,最后计算了电子与硫分子在5eV、7eV、9eV、11eV、13eV、15eV时的碰撞激发〓截面,作出了电子的入射能量与激发总截面的关系曲线,找出了总截面最大时对应的电子入射能量大约是11电子伏。
-
Based on varying process of generator terminal parameters after excitation fault, shortages of excitation protective principle of static stability boundary and asynchronous impedance boundary are analyzed. It proposed that excitation fault research relates to large-disturbance stability. Because dynamic power-angle character of generator after excitation fault is non-sinusoidal, there are differences between dynamic power-angle character and static state power-angle character. So it isn't ideal to protective operation result based on small-disturbance stability and static stability boundary criterion. At the same time, it proposed that asynchronous boundary impedance criterion is a constant reactive power circle moving adown j Xd′. It can ensure complete loss-of-excitation generator measuring impedance enter into the circle, but can't ensure the other condition measuring impedance including impossible losing synchronism enter. So loss-of-excitation protection would be maloperation when system voltage drops short and recovers or generator rejects load.③Based on stability principle, it puts forward setting conditions and calculation method of generator loss-of-excitation protection by direct measuring power-angle.
以励磁故障后发电机端的相关参数的变化为基础,通过对以静稳定边界和异步阻抗边界作判据的两类三种现行励磁保护在原理上存在的缺陷分析,发现:励磁故障是一个大干扰稳定性问题,励磁故障后的发电机的动态功角特性与静态功角特性有很大的差异,已远非正弦曲线,因此基于小干扰稳定性原理、以静稳定边界作判据的保护必然动作不理想;异步边界阻抗判据是一个下移j Xd′的等无功阻抗圆,它可以保证完全失磁后的发电机测量阻抗能进入该阻抗圆,但不能保证完全失磁之外的其它状态不会进入该阻抗圆,因此在系统电压短时下降或发电机突然甩负荷等情况下可能启动该保护使之误动。
- 更多网络解释 与nuclear excitation by electron transition相关的网络解释 [注:此内容来源于网络,仅供参考]
-
electron transition:电子转移
电子传递 electron transfer; electron transport | 电子转移 electron transition | 电子传递粒子 electron transport particle
-
excitation energy transfer:激发传递
excitation electron 激发电子 | excitation energy transfer 激发传递 | excitation frequency 激发频率
-
transition, electron:电子跃迁
偶极加马跃迁 transition, dipole gamma-tray | 电子跃迁 transition, electron | 电子捕获跃迁 transition, electroncapture