norm topology
- norm topology的基本解释
-
-
范拓扑
- 更多网络例句与norm topology相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Among which topology can not be a norm topology.
其中拓扑不可能是范数拓扑。
-
If a subspace '' U '' of '' X '' is not closed in the norm topology, then projection onto ''U'' is not continuous.
如果 '' X ''的子空间'' U ''在规范拓扑下不闭合,则到''U''上的投影是不连续的。
-
It is shown that an exponentially bounded integrated bisemigroups can be considered as the integration of a strongly continuous bisemigroup of bounded linear operators in some subspace of a Banach space with stronger norm topology,and also as the restriction of a strongly continuous bisemigroup of bounded linear operators in a bigger space with weaker norm topology.
证明了Banach空间x上的指数有界积分双半群可以作为x的某个子空间上具有较强范数拓扑下的有界线性算子强连续双半群的积分,同时也可作为较大空间上具有较弱范数拓扑下的有界线性算子强连续双半群积分的限制。
- 更多网络解释与norm topology相关的网络解释 [注:此内容来源于网络,仅供参考]
-
norm topology:范拓朴
norm residue symbol 范数剩余符号 | norm topology 范拓朴 | normability 可模性