nilpotent matrix
- nilpotent matrix的基本解释
-
-
幂零阵
- 更多网络例句与nilpotent matrix相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This paper first presents the definition of nilpotent matrix and then moves on to discuss certain properties of them.
本文先给出幂零矩阵的定义,然后讨论了它的若干性质。
-
Therefore, in order to offer reference to Readers, based on idempotent matrix, involutory matrix, nilpotent matrix, diagonal matrix, the main character of special matrix are proved in this paper after the Defined and algorithm of eigenvalue of matrix .for example , some problems of the eigenvalues of matrix are solved in a special method based on the eigenvalues of matrix .
为此, 本文除了介绍矩阵特征值的定义和算法外,还围绕幂等矩阵、幂零矩阵、对角矩阵、等特殊矩阵给出了其主要性质并加以证明,同时还介绍了一些特殊矩阵的特征值的算法,例如:本文利用矩阵的特征值,对与矩阵的特征值相关的一些典型问题给出了较好的处理方法。
-
However, the properties of nilpotent matrix have not been much explored although its definition is given in discussing the multiplication of matrix, As special forms of matrixes, nilpotent matrix plays a key role not only in the theory of matrix but also in actual application.
幂零矩阵作为特殊矩阵无论在矩阵理论方面,还是在实际应用方面都有重要的意义。
-
Therefore, in order to offer reference to readers, the paper systematically expound and prove the eigenvalue of special matrix that base on idempotent matrix, antiidempotent matrix, involutory matrix, anntiinvolutory matrix, nilpotent matrix, orthogonal matrix, polynomial matrix, the shape of , matrix, diagonal matrix, invertidle matrix, adjoint matrix, similar matrix, transposed matrix, numerical matrix, companion matrix, and practicality and superiority of the achievement was showed by some examples.
为此本文系统地阐述幂等矩阵,反幂等矩阵,对合矩阵,反对合矩阵,幂零矩阵,正交矩阵,多项式矩阵,形为:,矩阵,对角矩阵,可逆矩阵,伴随矩阵,相似矩阵,转置矩阵,友矩阵一系列特殊矩阵的特征值问题并加以证明,并通过一些具体例子展示所得成果的实用性和优越性。
- 更多网络解释与nilpotent matrix相关的网络解释 [注:此内容来源于网络,仅供参考]
-
nilpotent matrix:幂零矩阵
nilpotent ideal 幂零理想 | nilpotent matrix 幂零矩阵 | nilpotent radical 幂零根基
-
nilpotent matrix:羃零[方]阵
羃零理想 nilpotent ideal | 羃零[方]阵 nilpotent matrix | 羃零算子 nilpotent operator