英语人>词典>英汉 : minimal manifold的中文,翻译,解释,例句
minimal manifold的中文,翻译,解释,例句

minimal manifold

minimal manifold的基本解释
-

极小簇

相似词
更多 网络例句 与minimal manifold相关的网络例句 [注:此内容来源于网络,仅供参考]

In this paper, the existence of isometric mapping between the manifold in the high-dimensional data space and the parameter space is proved. By distinguishing the intrinsic dimensionality of high-dimensional data space from the manifold dimensionality, and it is proved that the intrinsic dimensionality is the upper bound of the manifold dimensionality in the high-dimensional space in which there is a toroidal manifold.

首先给出了高维数据的连续流形和低维参数空间之间的等距映射存在性证明,然后区分了嵌入空间维数、高维数据空间的固有维数和流形维数,并证明存在环状流形高维数据空间的参数空间维数小于嵌入空间维数。

Next, we discuss the relations between left quasi-dual bimodules and left dual-bimodules, we obtain that a left quasi-dual bimodule is a left dual bimodule if it satisfies one of the following conditions: sM is minimal injective and MR is a M-minimal injective kasch-module; MR is a M-minimal injective kasch-module and for any two ideals LI and L2 ofSS rM(L1 n L2)-rw(L1)+rM(I2); sM is minimal injective and for any two submodules A and B of MR,Lastly, we applicate the quasi-duality on smash product algebra R#H, and obtain an answer of the semiprime problem, i.e., let H be a finite-dimensional semisimple Hopf algebra and R be an H-module algebra, if R is left quasi-dual and semiprime, then R#H is semiprime.

我们得到:一个左拟对偶双边模如果满足下列条件之一,则它将成为一个左对偶双边模:_sM是单内射的并且M_R是一个M-单内射kasch-模;M_R是一个M-单内射kasch-模并且对_sS的任意两个理想,有r_M(L_1∩L_2)=r_M(L_1)+r_M(L_2);_sM是单内射的且对M_R的任意两个子模,有l_s=l_s+l_s。2 在第2.3节中我们将拟对偶性应用于smash积代数R#H,部分解决了半素问题。

Secondly, by using the connection, we prove that the minimal continuous semi-flow is the minimal continuous flow if its time-one map is open, and for any minimal continuous semi-flow, there is an invariant residual set such that the restriction to the set is a minimal continuous flow.

为此,我们首先建立了它与其时间1映射极小集的联系;然后,利用这种联系证明了:若时间1映射为开映射,则它是极小的连续流,并且一般地说来,对任意极小连续半流,存在不变的剩余集,使得它在这不变集上的限制是极小的连续流。

更多网络解释 与minimal manifold相关的网络解释 [注:此内容来源于网络,仅供参考]

minimal manifold:极小簇

minimal graph 极小图形 | minimal manifold 极小簇 | minimal model 极小模型