maximal ideal space
- maximal ideal space的基本解释
-
-
极大理想空间
- 相似词
- 更多 网络例句 与maximal ideal space相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The first chapter, main instead " duo-ring " condition of " every maximal left ideal is GW-ideal " condition,study strongly regularities of GP-V-ring on this condition.lt is shown that (1) R is strongly regular iff R is left GP-V-ring whose maximal left ideals are GW-ideal.(2)R is strongly regular iff R is left GP-V-ring whose maximal right ideals are GW-ideal. The second chapter, generalize some results of GP-V-ring to GP-V-ring, discuss regularity of GP-V-ring.It is shown that (1) R is left self-injective regular with non-zero socle iff R is left GP-V -ring with Soc = Soc and R contains an injective maximal left ideal.(2)R is regular ring and every maximal essential left ideal is ideal iff R is left GP-injective left GP-V -ring and every maximal essential left ideal is ideal.
第一章主要将"duo-环"条件替换成"每一极大左理想是GW-理想"条件,研究在此条件下,GP-V-环的强正则性,证明了:(1)R是强正则环当且仅当R是左GP-V-环且R的每一极大左理想是广义弱理想;(2)R是强正则环当且仅当R是左GP-V-环且R的每一极大右理想是广义弱理想,第二章,主要将GP-V-环上一些结果推广到GP-V′-环上,讨论GP-V′-环的正则性,证明了:(1)R是左自内射正则环且Soc≠0当且仅当R是包含内射极大左理想的GP-V′-环,且Soc=Soc;(2)R是正则环且每一极大本质左理想是理想当且仅当R是左GP-内射的左GP-V′-环且每一极大本质左理想是理想。
-
Since any frequent itemset is a subset of a maximal frequent itemset (an itemset is maximal frequent if it has no superset that is frequent), this paper proposes the DMFI (Discovery of Maximal Frequent Itemsets) algorithm for mining all the maximal frequent itemsets from data sets. This algorithm searches the maximal frequent itemsets in data sets from both bottom-up and top-down directions in the meantime. This paper proposes an algorithm that evaluates the boundaries on the support and confidence of uncalculated itemsets by exploiting the information provided by the calculated itemsets.
本文在经典关联规则的基础上,提出了一系列扩展的关联规则开采算法:发现关联规则的难度体现在发现频繁项目集上,事实上最大频繁项目集(其所有的超集都为非频繁项目集的频繁项目集)的集合已经包含了所有的频繁项目集,本文提出一种发现最大频繁项目集的算法DMFI(Discovery Maximal Frequent Itemsets),该算法采用自底向上和自顶向下相结合的搜索策略对数据空间进行有效的搜索。
-
For example, U-space is uniformly regular and which makes it has fixed point property, U-space is uniformly non-square and thus super-reflexive, uniformly convex space and uniformly smooth space are U-spaces, and an Banach space is an U-space iff its dual space is U-space, etc. In1990s, a lot of work had been done on U-space theory, e.g., Tingfu Wang and Donghai Ji introduced the concepts of pre U-property and nearly U-property. Under the structure of Orlicz space, they made systematic investigation of these properties, and gave the criteria for an Orlicz space to have U-property.
U-空间具有一致正规结构进而具有不动点性质;U-空间是一致非方的,进而也是超自反的;一致凸空间和一致光滑空间是U-空间;Banach 空间为U-空间的充要条件是其对偶空间为U-空间,等等。20世纪90年代,国内外学者对U-空间理论做了很多工作,王廷辅,计东海等人先后引入了准U-性质与似U-性质的概念,并在Orlicz空间框架下对有关性质进行了系统研究,完整给出了Orlicz空间具有各种U-性质的判据。
- 更多网络解释 与maximal ideal space相关的网络解释 [注:此内容来源于网络,仅供参考]
-
maximal ideal space:极大理想空间
maximal ideal 极大理想 | maximal ideal space 极大理想空间 | maximal operator 最大算子