matrices ['meitrisi:z]
- matrices的基本解释
-
-
[变形] matrix的复数形式
-
-
(专业术语)基质, 基体, 基岩, 子宫, 发源地, 母式, 真值表, 矩阵, 型片, 纸型, 模型
- 相似词
- matrices的同义词
- n. matrix
- 拼写相近单词
- matrice
- 更多 网络例句 与matrices相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Thesis and mainly discuss the following problems:What we mainly discussed in the second chapter as follows:(1) S1,S2 are sets of symmetric orth-symmetric matrices;(2) S1,S2 are sets of bisymmetric matrices;(3) S1,S2 are sets of anti-symmetric orth-anti-symmetric matrices;(4) S1,S2 are sets of bi-anti-symmetric matrices;(5) S1 is the set of symmetric orth-symmetric matrices, S2 is the set of anti-symmetric orth-anti-symmetric matrices;(6) S1 is the set of bisymmetric matrices, S2 is the set of bi-anti-symmetric matrices;(7) S1 is the set of anti-symmetric orth-anti-symmetric matrices, S2 is the set of symmetric orth-symmetric matrices;(8) S1 is the set of bi-anti-symmetric matrices, S2 is the set of bisymmetricmatrices;On the base of studying the basic properties of the matrices, the expression of solutions and some numerical examples are presented.
本文第二章将主要就上述问题讨论如下几种情况: 1.S_1,S_2为对称正交对称矩阵; 2.S_1,S_2为双对称矩阵; 3.S_1,S_2为反对称正交反对称矩阵; 4.S_1,S_2为双反对称矩阵; 5.S_1为对称正交对称矩阵,S_2为反对称正交反对称矩阵; 6.S_1为双对称矩阵,S_2为双反对称矩阵; 7.S_1为反对称正交反对称矩阵,S_2为对称正交对称矩阵; 8.S_1为双反对称矩阵,S_2为双对称矩阵。
-
In this dissertation, we construct the Bariev model with nine kinds of boundary fields by the matrices K_± defining the boundaries. And then the Lax operator is given in the form ofmatrix, as well as the basic quantities, e.g., the R -matrix, the monodromy matrices and the transfer matrices are defined. By using the expression of the local Lax operator of the model,the action of the monodromy matrices T, T~(-1), U_ on the pseudo-vacuum state is given outin detail. Furthermore, the main fundamental commutation relations are obtained through the reflection equations, the recursive n-particle state as well as the one-particle exact solution is given and the Bethe ansatz equations are found accordingly. Finally, we list the nesting boundary K matrices, which play a crucial role for obtaining the n-particle solution and finding the Bethe ansatz equations, the eigenvalues of the transfer matrices and the energy spectrum of the system by means of the nested algebraic Bethe ansatz method.
在这篇文章中,我们利用边界K_±矩阵构造出了具有九种边界场的Bariev模型,同时给出了该模型L算子的具体矩阵表示形式,并定义了R矩阵,monodromy矩阵以及转移矩阵;接着利用L算子的矩阵形式,给出了其对应monodromy矩阵T、逆矩阵T~(-1)作用到真空态上的值,并利用Yang-Baxter关系及反射方程得到了双行monodromy矩阵U作用到真空态上的值;然后利用反射方程通过复杂的计算得到了一系列重要的基本对易关系式,并给出了模型的递推的多粒子波函数、单粒子解及Bethe ansat方程;最后给出了模型的嵌套的边界K矩阵的具体形式,从而为运用嵌套Bethe ansatz方法求解该模型的多粒子解、Bethe ansatz方程以及系统的能谱打下了很好的基础。
-
It consists of the next three aspects: firstly, we study Murthys' open problem whether the augmented matrix is a Q0-matrix for an arbitary square matrix A , provide an affirmable answer to this problem , obtain the augmented matrix of a sufficient matrix is a sufficient matrix and prove the Graves algorithm can be used to solve linear complementarity problem with bisymmetry Po-matrices; Secondly, we study Murthys' conjecture about positive semidefinite matrices and provide some sufficient conditions such that a matrix is a positive semidefinite matrix, we also study Pang's conjecture , obtain two conditions when R0-matrices and Q-matrices are equivelent and some properties about E0 ∩ Q-matrices; Lastly, we give a counterexample to prove Danao's conjecture that if A is a Po-matrix, A ∈ E' A ∈ P1* is false, point out some mistakes of Murthys in [20] , obtain when n = 2 or 3, A ∈ E' A ∈ P1*, i.e.
本文分为三个部分,主要研究了线性互补问题的几个相关的公开问题以及猜想:(1)研究了Murthy等在[2]中提出的公开问题,即对任意的矩阵A,其扩充矩阵是否为Q_0-矩阵,给出了肯定的回答,得到充分矩阵的扩充矩阵是充分矩阵,并讨论了Graves算法,证明了若A是双对称的P_0-矩阵时,LCP可由Graves算法给出;(2)研究了Murthy等在[6]中提出关于半正定矩阵的猜想,给出了半正定矩阵的一些充分条件,并研究了Pang~-猜想,得到了只R_0-矩阵与Q-矩阵的二个等价条件,以及E_0∩Q-矩阵的一些性质;(3)研究了Danao在[25]中提出的Danao猜想,即,若A为P_0-矩阵,则,我们给出了反例证明了此猜想当n≥4时不成立,指出了Murthy等在[20]中的一些错误,得到n=2,3时,即[25]中定理3.2中A∈P_0的条件可以去掉。
- 更多网络解释 与matrices相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Pauli matrices:泡利矩阵
Pauli exclusion principle 泡利不相容定理 | Pauli matrices 泡利矩阵 | Pauling's principle 泡令定理
-
Pauli matrices:泡利阵
pattern 图形 | pauli matrices 泡利阵 | payoff 支付
-
commuting matrices:交换矩阵
column vector 列向量 | commuting matrices 交换矩阵 | consistent linear system 相容线性方程组
-
commuting matrices:交换矩阵对
光传播矩阵:Propagation matrices | 交换矩阵对:commuting matrices | 非对称矩阵:unsymmetric matrices
-
matrices:(矩阵)
它是基于结构化算法的,主要包含以下两个方面:1.许多数据结构的并行模式的实现,目前已经实现的并行模式库有:表(list),树(trees),矩阵(matrices),这些并行模式是用C++和MPI实现的;2.对模式程序的最优机制,
- 加载更多网络解释 (6)